메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages 365-371

Event detection and domain adaptation with convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; COMPUTATIONAL LINGUISTICS; CONVOLUTION; NEURAL NETWORKS; LINGUISTICS;

EID: 84944030435     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p15-2060     Document Type: Conference Paper
Times cited : (447)

References (32)
  • 1
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural corre-spondence learning
    • John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain Adaptation with Structural Corre-spondence Learning. In Proceedings of EMNLP
    • (2006) Proceedings of EMNLP
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 2
    • 56449095373 scopus 로고    scopus 로고
    • A uni-fied architecture for natural language processing: Deep neural networks with multitask learning
    • Ronan Collobert and Jason Weston. 2008. A Uni-fied Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. In Proceedings of ICML
    • (2008) Proceedings of ICML
    • Collobert, R.1    Weston, J.2
  • 4
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Hal Daume III. 2007. Frustratingly Easy Domain Adaptation. In Proceedings of ACL
    • (2007) Proceedings of ACL
    • Daume, H.1
  • 5
    • 77956584723 scopus 로고    scopus 로고
    • Predicting un-known time arguments based on cross-event prop-agation
    • Prashant Gupta and Heng Ji. 2009. Predicting Un-known Time Arguments Based on Cross-Event Prop-agation. In Proceedings of ACL-UCNLP
    • (2009) Proceedings of ACL-UCNLP
    • Gupta, P.1    Ji, H.2
  • 6
    • 84890466217 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors
    • abs/1207.0580
    • Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors. CoRR, abs/1207.0580
    • (2012) CoRR
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 8
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • Baotian Hu, Zhengdong Lu, Hang Li, Qingcai Chen. 2014. Convolutional Neural Network Architectures for Matching Natural Language Sentences. In Pro-ceedings of NIPS
    • (2014) Proceedings of NIPS
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 9
    • 84868266866 scopus 로고    scopus 로고
    • Modeling tex-tual cohesion for event extraction
    • Ruihong Huang and Ellen Riloff. 2012. Modeling Tex-tual Cohesion for Event Extraction. In Proceedings of AAAI
    • (2012) Proceedings of AAAI
    • Huang, R.1    Riloff, E.2
  • 10
    • 84859903043 scopus 로고    scopus 로고
    • Refining event extraction through cross-document inference
    • Heng Ji and Ralph Grishman. 2008. Refining Event Extraction through Cross-Document Inference. In Proceedings of ACL
    • (2008) Proceedings of ACL
    • Ji, H.1    Grishman, R.2
  • 12
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of EMNLP
    • (2014) Proceedings of EMNLP
    • Kim, Y.1
  • 13
    • 0032203257 scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner. 1988. Gradient-based Learning Applied to Document Recognition. In Proceedings of the IEEE, 86(11):22782324
    • (1988) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 22782324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 84901491148 scopus 로고    scopus 로고
    • Argument inference from relevant event mentions in Chinese argument extraction
    • Peifeng Li, Qiaoming Zhu, and Guodong Zhou. 2013a. Argument Inference from Relevant Event Mentions in Chinese Argument Extraction. In Proceedings of ACL
    • (2013) Proceedings of ACL
    • Li, P.1    Zhu, Q.2    Zhou, G.3
  • 15
    • 84894653924 scopus 로고    scopus 로고
    • Joint event extraction via structured prediction with global features
    • Qi Li, Heng Ji, and Liang Huang. 2013b. Joint Event Extraction via Structured Prediction with Global Features. In Proceedings of ACL
    • (2013) Proceedings of ACL
    • Li, Q.1    Ji, H.2    Huang, L.3
  • 16
    • 84859985050 scopus 로고    scopus 로고
    • Using doc-ument level cross-event inference to improve event extraction
    • Shasha Liao and Ralph Grishman. 2010. Using Doc-ument Level Cross-event Inference to Improve Event Extraction. In Proceedings of ACL
    • (2010) Proceedings of ACL
    • Liao, S.1    Grishman, R.2
  • 17
    • 84866876887 scopus 로고    scopus 로고
    • Acquiring topic features to improve event extraction: In pre-selected and balanced collections
    • Shasha Liao and Ralph Grishman. 2011. Acquiring Topic Features to Improve Event Extraction: in Pre-selected and Balanced Collections. In Proceedings RANLP
    • (2011) Proceedings RANLP
    • Liao, S.1    Grishman, R.2
  • 20
    • 84898956512 scopus 로고    scopus 로고
    • Distributed repre-sentations of words and phrases and their compo-sitionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed Repre-sentations of Words and Phrases and their Compo-sitionality. In Proceedings of NIPS
    • (2013) Proceedings of NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.4    Dean, J.5
  • 21
    • 84906930736 scopus 로고    scopus 로고
    • Em-ploying word representations and regularization for domain adaptation of relation extraction
    • Thien Huu Nguyen and Ralph Grishman. 2014. Em-ploying Word Representations and Regularization for Domain Adaptation of Relation Extraction. In Proceedings of ACL
    • (2014) Proceedings of ACL
    • Huu Nguyen, T.1    Grishman, R.2
  • 23
    • 80053430767 scopus 로고    scopus 로고
    • A uni-fied model of phrasal and sentential evidence for information extraction
    • Siddharth Patwardhan and Ellen Rilof. 2009. A Uni-fied Model of Phrasal and Sentential Evidence for Information Extraction. In Proceedings of EMNLP
    • (2009) Proceedings of EMNLP
    • Patwardhan, S.1    Rilof, E.2
  • 24
    • 84907345507 scopus 로고    scopus 로고
    • Em-bedding semantic similarity in tree kernels for do-main adaptation of relation extraction
    • Barbara Plank and Alessandro Moschitti. 2013. Em-bedding Semantic Similarity in Tree Kernels for Do-main Adaptation of Relation Extraction. In Proceed-ings of ACL
    • (2013) Proceed-ings of ACL
    • Plank, B.1    Moschitti, A.2
  • 25
    • 80053284695 scopus 로고    scopus 로고
    • Fast and robust joint models for biomedical event extraction
    • Sebastian Riedel and Andrew McCallum. 2011. Fast and Robust Joint Models for Biomedical Event Ex-traction. In Proceedings of EMNLP
    • (2011) Proceedings of EMNLP
    • Riedel, S.1    McCallum, A.2
  • 26
  • 27
    • 84990946747 scopus 로고    scopus 로고
    • Learning semantic repre-sentations using convolutional neural networks for web search
    • Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng and Gregoire Mesnil. 2014. Learning Semantic Repre-sentations Using Convolutional Neural Networks for Web Search. In Proceedings of WWW
    • (2014) Proceedings of WWW
    • Shen, Y.1    He, X.2    Gao, J.3    Deng, L.4    Mesnil, G.5
  • 28
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word Representations: A Simple and General Method for Semi-supervised Learning. In Proceed-ings of ACL
    • (2010) Proceed-ings of ACL
    • Turian, J.1    Ratinov, L.2    Bengio, Y.3
  • 29
    • 84961302979 scopus 로고    scopus 로고
    • Relieving the computational bottleneck: Joint inference for event extraction with high-dimensional features
    • Deepak Venugopal, Chen Chen, Vibhav Gogate and Vincent Ng. 2014. Relieving the Computational Bottleneck: Joint Inference for Event Extraction with High-Dimensional Features. In Proceedings of EMNLP
    • (2014) Proceedings of EMNLP
    • Venugopal, D.1    Chen, C.2    Gogate, V.3    Ng, V.4
  • 30
    • 84906930320 scopus 로고    scopus 로고
    • Semantic parsing for single-relation ques-tion answering
    • Wen-Taii Yih, Xiaodong He, and Christopher Meek. 2014. Semantic Parsing for Single-Relation Ques-tion Answering. In Proceedings of ACL
    • (2014) Proceedings of ACL
    • Yih, W.1    He, X.2    Meek, C.3
  • 31
    • 84905272120 scopus 로고    scopus 로고
    • ADADELTA: An adaptive learning rate method
    • abs/1212.5701
    • Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR, abs/1212.5701
    • (2012) CoRR
    • Zeiler, M.D.1
  • 32
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and Jun Zhao. 2014. Relation Classification via Convolutional Deep Neural Network. In Proceed-ings ofCOLING
    • (2014) Proceed-ings OfCOLING
    • Zeng, D.1    Liu, K.2    Lai, S.3    Zhou, G.4    Zhao, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.