-
1
-
-
84862925405
-
Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng
-
COI: 1:CAS:528:DC%2BC38XjvFOmtL0%3D
-
Kim, D.-H. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res. 36, 1 (2012)
-
(2012)
J. Ginseng Res.
, vol.36
, pp. 1
-
-
Kim, D.-H.1
-
2
-
-
84895921714
-
Major repeat components covering one‐third of the ginseng (Panax ginseng CA Meyer) genome and evidence for allotetraploidy
-
COI: 1:CAS:528:DC%2BC2cXjvFOrs74%3D
-
Choi, H. I. et al. Major repeat components covering one‐third of the ginseng (Panax ginseng CA Meyer) genome and evidence for allotetraploidy. Plant J. 77, 906–916 (2014)
-
(2014)
Plant J.
, vol.77
, pp. 906-916
-
-
Choi, H.I.1
-
3
-
-
51349106992
-
Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer
-
COI: 1:CAS:528:DC%2BD1cXhtV2rurbI
-
Choi, K.-T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 29, 1109 (2008)
-
(2008)
Acta Pharmacol. Sin.
, vol.29
, pp. 1109
-
-
Choi, K.-T.1
-
4
-
-
84910135031
-
20 (S)-protopanaxadiol inhibition of progression and growth of castration-resistant prostate cancer
-
Cao, B. et al. 20 (S)-protopanaxadiol inhibition of progression and growth of castration-resistant prostate cancer. Plos One 9, e111201 (2014)
-
(2014)
Plos One
, vol.9
-
-
Cao, B.1
-
5
-
-
84908042323
-
20 (S)-Protopanaxadiol induces human breast cancer MCF-7 apoptosis through a caspase-mediated pathway
-
Zhang, H. et al. 20 (S)-Protopanaxadiol induces human breast cancer MCF-7 apoptosis through a caspase-mediated pathway. Asian Pac. J. Cancer Prev. 15, 7919–7923 (2014)
-
(2014)
Asian Pac. J. Cancer Prev.
, vol.15
, pp. 7919-7923
-
-
Zhang, H.1
-
6
-
-
0035653529
-
Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds
-
COI: 1:CAS:528:DC%2BD38XlvFCruw%3D%3D
-
Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16, S28 (2001)
-
(2001)
J. Korean Med. Sci.
, vol.16
, pp. S28
-
-
Shibata, S.1
-
7
-
-
85101094737
-
-
Springer
-
Paek, K.-Y., Murthy, H. N., Hahn, E.-J. & Zhong, J.-J. In Biotechnology in China I 151–176 (Springer, 2009)
-
(2009)
In Biotechnology in China
, vol.1
, pp. 151-176
-
-
Paek, K.-Y.1
Murthy, H.N.2
Hahn, E.-J.3
Zhong, J.-J.4
-
8
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
COI: 1:CAS:528:DC%2BC38XntF2nt70%3D
-
Lee, J. W. et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536 (2012)
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 536
-
-
Lee, J.W.1
-
9
-
-
84886486790
-
Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
-
COI: 1:CAS:528:DC%2BC3sXhvFyltb7E
-
Dai, Z. et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab. Eng. 20, 146–156 (2013)
-
(2013)
Metab. Eng.
, vol.20
, pp. 146-156
-
-
Dai, Z.1
-
10
-
-
85020019811
-
Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals
-
COI: 1:CAS:528:DC%2BC2sXovVGrsr8%3D
-
Yu, T. et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 15587 (2017)
-
(2017)
Nat. Commun.
, vol.8
-
-
Yu, T.1
-
11
-
-
84961599119
-
Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis
-
COI: 1:CAS:528:DC%2BC28XktVOntro%3D
-
Cardenas, J. & Da Silva, N. A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab. Eng. 36, 80–89 (2016)
-
(2016)
Metab. Eng.
, vol.36
, pp. 80-89
-
-
Cardenas, J.1
Da Silva, N.A.2
-
12
-
-
85044448379
-
Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer
-
Denby, C. M. et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9, 965 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Denby, C.M.1
-
13
-
-
85046415139
-
Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer
-
Chen, N., Wang, J., Zhao, Y. & Deng, Y. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb. Cell Fact. 17, 67 (2018)
-
(2018)
Microb. Cell Fact.
, vol.17
, pp. 67
-
-
Chen, N.1
Wang, J.2
Zhao, Y.3
Deng, Y.4
-
14
-
-
33748809553
-
Dammarenediol‐II synthase, the first dedicated enzyme for ginsenoside biosynthesis
-
COI: 1:CAS:528:DC%2BD28XpvFGntro%3D
-
Tansakul, P., Shibuya, M., Kushiro, T. & Ebizuka, Y. Dammarenediol‐II synthase, the first dedicated enzyme for ginsenoside biosynthesis. In Panax ginseng. FEBS Lett. 580, 5143–5149 (2006)
-
(2006)
In Panax ginseng. FEBS Lett.
, vol.580
, pp. 5143-5149
-
-
Tansakul, P.1
Shibuya, M.2
Kushiro, T.3
Ebizuka, Y.4
-
15
-
-
83255165496
-
The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng
-
COI: 1:CAS:528:DC%2BC3MXhs1WgsbrL
-
Han, J.-Y., Kim, H.-J., Kwon, Y.-S. & Choi, Y.-E. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 52, 2062–2073 (2011)
-
(2011)
Plant Cell Physiol.
, vol.52
, pp. 2062-2073
-
-
Han, J.-Y.1
Kim, H.-J.2
Kwon, Y.-S.3
Choi, Y.-E.4
-
16
-
-
84977124867
-
Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC28XhvFSlsb4%3D
-
Zhao, F. et al. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 113, 1787–1795 (2016)
-
(2016)
Biotechnol. Bioeng.
, vol.113
, pp. 1787-1795
-
-
Zhao, F.1
-
17
-
-
84968912287
-
Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris
-
COI: 1:CAS:528:DC%2BC28XlvVaitrY%3D
-
Zhao, C. et al. Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris. J. Agric. Food Chem. 64, 3380–3385 (2016)
-
(2016)
J. Agric. Food Chem.
, vol.64
, pp. 3380-3385
-
-
Zhao, C.1
-
18
-
-
85063358333
-
Production of ginsenoside aglycone (Protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginsenggenes: PgDDS, CYP716A47, and CYP716A53v2
-
Gwak, Y. S., Han, J. Y. & Choi, Y. E. Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginsenggenes: PgDDS, CYP716A47, and CYP716A53v2. J. Ginseng Res (2018)
-
(2018)
J. Ginseng Res
-
-
Gwak, Y.S.1
Han, J.Y.2
Choi, Y.E.3
-
19
-
-
68049137324
-
Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD1MXps1Wqu7k%3D
-
Hou, J., Lages, N. F., Oldiges, M. & Vemuri, G. N. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng. 11, 253–261 (2009)
-
(2009)
Metab. Eng.
, vol.11
, pp. 253-261
-
-
Hou, J.1
Lages, N.F.2
Oldiges, M.3
Vemuri, G.N.4
-
20
-
-
33847785682
-
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD2sXisVShsbY%3D
-
Vemuri, G., Eiteman, M., McEwen, J., Olsson, L. & Nielsen, J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 104, 2402–2407 (2007)
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, pp. 2402-2407
-
-
Vemuri, G.1
Eiteman, M.2
McEwen, J.3
Olsson, L.4
Nielsen, J.5
-
21
-
-
79952108090
-
The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus
-
COI: 1:CAS:528:DC%2BC3MXjsFaks78%3D
-
Pei, J. et al. The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metab. Eng. 13, 186–193 (2011)
-
(2011)
Metab. Eng.
, vol.13
, pp. 186-193
-
-
Pei, J.1
-
22
-
-
0031962865
-
Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
-
COI: 1:CAS:528:DyaK1cXhtVantbY%3D
-
Polakowski, T., Stahl, U. & Lang, C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol. Biotechnol. 49, 66–71 (1998)
-
(1998)
Appl. Microbiol. Biotechnol.
, vol.49
, pp. 66-71
-
-
Polakowski, T.1
Stahl, U.2
Lang, C.3
-
23
-
-
85029669745
-
Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC2sXhtlymt7nF
-
Paramasivan, K. & Mutturi, S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. J. Agric. Food Chem. 65, 8162–8170 (2017)
-
(2017)
J. Agric. Food Chem.
, vol.65
, pp. 8162-8170
-
-
Paramasivan, K.1
Mutturi, S.2
-
25
-
-
79551478567
-
Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes
-
COI: 1:CAS:528:DC%2BC3MXisVOru7g%3D
-
Albertsen, L. et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl. Environ. Microbiol. 77, 1033–1040 (2011)
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 1033-1040
-
-
Albertsen, L.1
-
26
-
-
84872377725
-
Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production
-
Özaydın, B., Burd, H., Lee, T. S. & Keasling, J. D. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab. Eng. 15, 174–183 (2013)
-
(2013)
Metab. Eng.
, vol.15
, pp. 174-183
-
-
Özaydın, B.1
Burd, H.2
Lee, T.S.3
Keasling, J.D.4
-
27
-
-
84892145804
-
Carbon source dependent promoters in yeasts
-
Weinhandl, K., Winkler, M., Glieder, A. & Camattari, A. Carbon source dependent promoters in yeasts. Microb. Cell Fact. 13, 5 (2014)
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 5
-
-
Weinhandl, K.1
Winkler, M.2
Glieder, A.3
Camattari, A.4
-
28
-
-
84924040473
-
Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L‐lactic acid
-
COI: 1:CAS:528:DC%2BC2MXhtFKgur8%3D
-
Lee, J. Y., Kang, C. D., Lee, S. H., Park, Y. K. & Cho, K. M. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L‐lactic acid. Biotechnol. Bioeng. 112, 751–758 (2015)
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 751-758
-
-
Lee, J.Y.1
Kang, C.D.2
Lee, S.H.3
Park, Y.K.4
Cho, K.M.5
-
29
-
-
85016043516
-
A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
-
Reider Apel, A. et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 45, 496–508 (2016)
-
(2016)
Nucleic Acids Res.
, vol.45
, pp. 496-508
-
-
Reider Apel, A.1
-
30
-
-
78650451581
-
The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway
-
Cadière, A., Galeote, V. & Dequin, S. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. FEMS Yeast Res. 10, 819–827 (2010)
-
(2010)
FEMS Yeast Res.
, vol.10
, pp. 819-827
-
-
Cadière, A.1
Galeote, V.2
Dequin, S.3
-
31
-
-
6044273857
-
Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
-
dos Santos, M. M., Raghevendran, V., Kötter, P., Olsson, L. & Nielsen, J. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab. Eng. 6, 352–363 (2004)
-
(2004)
Metab. Eng.
, vol.6
, pp. 352-363
-
-
dos Santos, M.M.1
Raghevendran, V.2
Kötter, P.3
Olsson, L.4
Nielsen, J.5
-
32
-
-
0038529613
-
The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
-
COI: 1:CAS:528:DC%2BD3sXjtVSiur4%3D
-
Grabowska, D. & Chelstowska, A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 278, 13984–13988 (2003)
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 13984-13988
-
-
Grabowska, D.1
Chelstowska, A.2
-
33
-
-
33747779674
-
Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production
-
COI: 1:CAS:528:DC%2BD28XovFygs70%3D
-
Larochelle, M., Drouin, S., Robert, F. & Turcotte, B. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol. Cell. Biol. 26, 6690–6701 (2006)
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 6690-6701
-
-
Larochelle, M.1
Drouin, S.2
Robert, F.3
Turcotte, B.4
-
34
-
-
0025063371
-
Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK3cXls1yksLk%3D
-
Miller, S. M. & Magasanik, B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172, 4927–4935 (1990)
-
(1990)
J. Bacteriol.
, vol.172
, pp. 4927-4935
-
-
Miller, S.M.1
Magasanik, B.2
-
35
-
-
0032553314
-
Sources of NADPH and Expression of Mammalian NADP + -specific Isocitrate Dehydrogenases in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK1cXns1ensLs%3D
-
Minard, K. I., Jennings, G. T., Loftus, T. M., Xuan, D. & McAlister-Henn, L. Sources of NADPH and Expression of Mammalian NADP+ -specific Isocitrate Dehydrogenases in Saccharomyces cerevisiae. J. Biol. Chem. 273, 31486–31493 (1998)
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 31486-31493
-
-
Minard, K.I.1
Jennings, G.T.2
Loftus, T.M.3
Xuan, D.4
McAlister-Henn, L.5
-
36
-
-
28044459402
-
The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD2MXhtFyis7jL
-
Lu, L., Roberts, G. G., Oszust, C. & Hudson, A. P. The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae. Curr. Genet. 48, 235–246 (2005)
-
(2005)
Curr. Genet.
, vol.48
, pp. 235-246
-
-
Lu, L.1
Roberts, G.G.2
Oszust, C.3
Hudson, A.P.4
-
37
-
-
84925244299
-
De novo production of the plant-derived alkaloid strictosidine in yeast
-
COI: 1:CAS:528:DC%2BC2MXitlagur8%3D
-
Brown, S., Clastre, M., Courdavault, V. & O’Connor, S. E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl. Acad. Sci. 112, 3205–3210 (2015)
-
(2015)
Proc. Natl. Acad. Sci.
, vol.112
, pp. 3205-3210
-
-
Brown, S.1
Clastre, M.2
Courdavault, V.3
O’Connor, S.E.4
-
38
-
-
84941874386
-
Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC2MXhsFKqsrfK
-
Zhao, X., Shi, F. & Zhan, W. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 61, 354–360 (2015)
-
(2015)
Lett. Appl. Microbiol.
, vol.61
, pp. 354-360
-
-
Zhao, X.1
Shi, F.2
Zhan, W.3
-
39
-
-
35348981360
-
Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase
-
COI: 1:CAS:528:DC%2BD2sXht1amsr%2FK
-
Becker, J. et al. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J. Biotechnol. 132, 99–109 (2007)
-
(2007)
J. Biotechnol.
, vol.132
, pp. 99-109
-
-
Becker, J.1
-
40
-
-
33750623278
-
Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD28Xht1SgsbjO
-
Kwon, D.-H. et al. Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J. Mol. Catal., B Enzym. 43, 86–89 (2006)
-
(2006)
J. Mol. Catal., B Enzym.
, vol.43
, pp. 86-89
-
-
Kwon, D.-H.1
-
41
-
-
85028000268
-
Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC2sXhtlylt7bF
-
Partow, S., Hyland, P. B. & Mahadevan, R. Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae. Metab. Eng. 43, 64–70 (2017)
-
(2017)
Metab. Eng.
, vol.43
, pp. 64-70
-
-
Partow, S.1
Hyland, P.B.2
Mahadevan, R.3
-
42
-
-
84953882390
-
Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae
-
Bloem, A., Sanchez, I., Dequin, S. & Camarasa, C. Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 82, 174–183 (2015)
-
(2015)
Appl. Environ. Microbiol.
, vol.82
, pp. 174-183
-
-
Bloem, A.1
Sanchez, I.2
Dequin, S.3
Camarasa, C.4
-
43
-
-
0037313750
-
Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
-
Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003)
-
(2003)
Genome Res.
, vol.13
, pp. 244-253
-
-
Förster, J.1
Famili, I.2
Fu, P.3
Palsson, B.Ø.4
Nielsen, J.5
-
44
-
-
0347506028
-
It is all about metabolic fluxes
-
COI: 1:CAS:528:DC%2BD3sXpvVaqs7k%3D
-
Nielsen, J. It is all about metabolic fluxes. J. Bacteriol. 185, 7031–7035 (2003)
-
(2003)
J. Bacteriol.
, vol.185
, pp. 7031-7035
-
-
Nielsen, J.1
-
45
-
-
84892747580
-
Producing aglycons of ginsenosides in bakers’ yeast
-
Dai, Z. et al. Producing aglycons of ginsenosides in bakers’ yeast. Sci. Rep. 4, 3698 (2014)
-
(2014)
Sci. Rep.
, vol.4
-
-
Dai, Z.1
-
47
-
-
0023392267
-
A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains
-
COI: 1:CAS:528:DyaL2sXlsVymuro%3D
-
Alani, E., Cao, L. & Kleckner, N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541–545 (1987)
-
(1987)
Genetics
, vol.116
, pp. 541-545
-
-
Alani, E.1
Cao, L.2
Kleckner, N.3
|