메뉴 건너뛰기




Volumn 8, Issue 1, 2018, Pages

Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CARBON; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; PROTOPANAXADIOL; SAPOGENIN;

EID: 85055422864     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-018-34210-3     Document Type: Article
Times cited : (51)

References (47)
  • 1
    • 84862925405 scopus 로고    scopus 로고
    • Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng
    • COI: 1:CAS:528:DC%2BC38XjvFOmtL0%3D
    • Kim, D.-H. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res. 36, 1 (2012)
    • (2012) J. Ginseng Res. , vol.36 , pp. 1
    • Kim, D.-H.1
  • 2
    • 84895921714 scopus 로고    scopus 로고
    • Major repeat components covering one‐third of the ginseng (Panax ginseng CA Meyer) genome and evidence for allotetraploidy
    • COI: 1:CAS:528:DC%2BC2cXjvFOrs74%3D
    • Choi, H. I. et al. Major repeat components covering one‐third of the ginseng (Panax ginseng CA Meyer) genome and evidence for allotetraploidy. Plant J. 77, 906–916 (2014)
    • (2014) Plant J. , vol.77 , pp. 906-916
    • Choi, H.I.1
  • 3
    • 51349106992 scopus 로고    scopus 로고
    • Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer
    • COI: 1:CAS:528:DC%2BD1cXhtV2rurbI
    • Choi, K.-T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 29, 1109 (2008)
    • (2008) Acta Pharmacol. Sin. , vol.29 , pp. 1109
    • Choi, K.-T.1
  • 4
    • 84910135031 scopus 로고    scopus 로고
    • 20 (S)-protopanaxadiol inhibition of progression and growth of castration-resistant prostate cancer
    • Cao, B. et al. 20 (S)-protopanaxadiol inhibition of progression and growth of castration-resistant prostate cancer. Plos One 9, e111201 (2014)
    • (2014) Plos One , vol.9
    • Cao, B.1
  • 5
    • 84908042323 scopus 로고    scopus 로고
    • 20 (S)-Protopanaxadiol induces human breast cancer MCF-7 apoptosis through a caspase-mediated pathway
    • Zhang, H. et al. 20 (S)-Protopanaxadiol induces human breast cancer MCF-7 apoptosis through a caspase-mediated pathway. Asian Pac. J. Cancer Prev. 15, 7919–7923 (2014)
    • (2014) Asian Pac. J. Cancer Prev. , vol.15 , pp. 7919-7923
    • Zhang, H.1
  • 6
    • 0035653529 scopus 로고    scopus 로고
    • Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds
    • COI: 1:CAS:528:DC%2BD38XlvFCruw%3D%3D
    • Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16, S28 (2001)
    • (2001) J. Korean Med. Sci. , vol.16 , pp. S28
    • Shibata, S.1
  • 8
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • COI: 1:CAS:528:DC%2BC38XntF2nt70%3D
    • Lee, J. W. et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536 (2012)
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 536
    • Lee, J.W.1
  • 9
    • 84886486790 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
    • COI: 1:CAS:528:DC%2BC3sXhvFyltb7E
    • Dai, Z. et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab. Eng. 20, 146–156 (2013)
    • (2013) Metab. Eng. , vol.20 , pp. 146-156
    • Dai, Z.1
  • 10
    • 85020019811 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals
    • COI: 1:CAS:528:DC%2BC2sXovVGrsr8%3D
    • Yu, T. et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 15587 (2017)
    • (2017) Nat. Commun. , vol.8
    • Yu, T.1
  • 11
    • 84961599119 scopus 로고    scopus 로고
    • Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis
    • COI: 1:CAS:528:DC%2BC28XktVOntro%3D
    • Cardenas, J. & Da Silva, N. A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab. Eng. 36, 80–89 (2016)
    • (2016) Metab. Eng. , vol.36 , pp. 80-89
    • Cardenas, J.1    Da Silva, N.A.2
  • 12
    • 85044448379 scopus 로고    scopus 로고
    • Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer
    • Denby, C. M. et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9, 965 (2018)
    • (2018) Nat. Commun. , vol.9
    • Denby, C.M.1
  • 13
    • 85046415139 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer
    • Chen, N., Wang, J., Zhao, Y. & Deng, Y. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb. Cell Fact. 17, 67 (2018)
    • (2018) Microb. Cell Fact. , vol.17 , pp. 67
    • Chen, N.1    Wang, J.2    Zhao, Y.3    Deng, Y.4
  • 14
    • 33748809553 scopus 로고    scopus 로고
    • Dammarenediol‐II synthase, the first dedicated enzyme for ginsenoside biosynthesis
    • COI: 1:CAS:528:DC%2BD28XpvFGntro%3D
    • Tansakul, P., Shibuya, M., Kushiro, T. & Ebizuka, Y. Dammarenediol‐II synthase, the first dedicated enzyme for ginsenoside biosynthesis. In Panax ginseng. FEBS Lett. 580, 5143–5149 (2006)
    • (2006) In Panax ginseng. FEBS Lett. , vol.580 , pp. 5143-5149
    • Tansakul, P.1    Shibuya, M.2    Kushiro, T.3    Ebizuka, Y.4
  • 15
    • 83255165496 scopus 로고    scopus 로고
    • The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng
    • COI: 1:CAS:528:DC%2BC3MXhs1WgsbrL
    • Han, J.-Y., Kim, H.-J., Kwon, Y.-S. & Choi, Y.-E. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 52, 2062–2073 (2011)
    • (2011) Plant Cell Physiol. , vol.52 , pp. 2062-2073
    • Han, J.-Y.1    Kim, H.-J.2    Kwon, Y.-S.3    Choi, Y.-E.4
  • 16
    • 84977124867 scopus 로고    scopus 로고
    • Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC28XhvFSlsb4%3D
    • Zhao, F. et al. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 113, 1787–1795 (2016)
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 1787-1795
    • Zhao, F.1
  • 17
    • 84968912287 scopus 로고    scopus 로고
    • Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris
    • COI: 1:CAS:528:DC%2BC28XlvVaitrY%3D
    • Zhao, C. et al. Enhancing biosynthesis of a ginsenoside precursor by self-assembly of two key enzymes in Pichia pastoris. J. Agric. Food Chem. 64, 3380–3385 (2016)
    • (2016) J. Agric. Food Chem. , vol.64 , pp. 3380-3385
    • Zhao, C.1
  • 18
    • 85063358333 scopus 로고    scopus 로고
    • Production of ginsenoside aglycone (Protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginsenggenes: PgDDS, CYP716A47, and CYP716A53v2
    • Gwak, Y. S., Han, J. Y. & Choi, Y. E. Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginsenggenes: PgDDS, CYP716A47, and CYP716A53v2. J. Ginseng Res (2018)
    • (2018) J. Ginseng Res
    • Gwak, Y.S.1    Han, J.Y.2    Choi, Y.E.3
  • 19
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1MXps1Wqu7k%3D
    • Hou, J., Lages, N. F., Oldiges, M. & Vemuri, G. N. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng. 11, 253–261 (2009)
    • (2009) Metab. Eng. , vol.11 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 20
    • 33847785682 scopus 로고    scopus 로고
    • Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD2sXisVShsbY%3D
    • Vemuri, G., Eiteman, M., McEwen, J., Olsson, L. & Nielsen, J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 104, 2402–2407 (2007)
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 2402-2407
    • Vemuri, G.1    Eiteman, M.2    McEwen, J.3    Olsson, L.4    Nielsen, J.5
  • 21
    • 79952108090 scopus 로고    scopus 로고
    • The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus
    • COI: 1:CAS:528:DC%2BC3MXjsFaks78%3D
    • Pei, J. et al. The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metab. Eng. 13, 186–193 (2011)
    • (2011) Metab. Eng. , vol.13 , pp. 186-193
    • Pei, J.1
  • 22
    • 0031962865 scopus 로고    scopus 로고
    • Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast
    • COI: 1:CAS:528:DyaK1cXhtVantbY%3D
    • Polakowski, T., Stahl, U. & Lang, C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol. Biotechnol. 49, 66–71 (1998)
    • (1998) Appl. Microbiol. Biotechnol. , vol.49 , pp. 66-71
    • Polakowski, T.1    Stahl, U.2    Lang, C.3
  • 23
    • 85029669745 scopus 로고    scopus 로고
    • Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2sXhtlymt7nF
    • Paramasivan, K. & Mutturi, S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. J. Agric. Food Chem. 65, 8162–8170 (2017)
    • (2017) J. Agric. Food Chem. , vol.65 , pp. 8162-8170
    • Paramasivan, K.1    Mutturi, S.2
  • 25
    • 79551478567 scopus 로고    scopus 로고
    • Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes
    • COI: 1:CAS:528:DC%2BC3MXisVOru7g%3D
    • Albertsen, L. et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl. Environ. Microbiol. 77, 1033–1040 (2011)
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 1033-1040
    • Albertsen, L.1
  • 26
    • 84872377725 scopus 로고    scopus 로고
    • Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production
    • Özaydın, B., Burd, H., Lee, T. S. & Keasling, J. D. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab. Eng. 15, 174–183 (2013)
    • (2013) Metab. Eng. , vol.15 , pp. 174-183
    • Özaydın, B.1    Burd, H.2    Lee, T.S.3    Keasling, J.D.4
  • 28
    • 84924040473 scopus 로고    scopus 로고
    • Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L‐lactic acid
    • COI: 1:CAS:528:DC%2BC2MXhtFKgur8%3D
    • Lee, J. Y., Kang, C. D., Lee, S. H., Park, Y. K. & Cho, K. M. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L‐lactic acid. Biotechnol. Bioeng. 112, 751–758 (2015)
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 751-758
    • Lee, J.Y.1    Kang, C.D.2    Lee, S.H.3    Park, Y.K.4    Cho, K.M.5
  • 29
    • 85016043516 scopus 로고    scopus 로고
    • A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
    • Reider Apel, A. et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 45, 496–508 (2016)
    • (2016) Nucleic Acids Res. , vol.45 , pp. 496-508
    • Reider Apel, A.1
  • 30
    • 78650451581 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway
    • Cadière, A., Galeote, V. & Dequin, S. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. FEMS Yeast Res. 10, 819–827 (2010)
    • (2010) FEMS Yeast Res. , vol.10 , pp. 819-827
    • Cadière, A.1    Galeote, V.2    Dequin, S.3
  • 31
    • 6044273857 scopus 로고    scopus 로고
    • Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
    • dos Santos, M. M., Raghevendran, V., Kötter, P., Olsson, L. & Nielsen, J. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab. Eng. 6, 352–363 (2004)
    • (2004) Metab. Eng. , vol.6 , pp. 352-363
    • dos Santos, M.M.1    Raghevendran, V.2    Kötter, P.3    Olsson, L.4    Nielsen, J.5
  • 32
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • COI: 1:CAS:528:DC%2BD3sXjtVSiur4%3D
    • Grabowska, D. & Chelstowska, A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 278, 13984–13988 (2003)
    • (2003) J. Biol. Chem. , vol.278 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 33
    • 33747779674 scopus 로고    scopus 로고
    • Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production
    • COI: 1:CAS:528:DC%2BD28XovFygs70%3D
    • Larochelle, M., Drouin, S., Robert, F. & Turcotte, B. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol. Cell. Biol. 26, 6690–6701 (2006)
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 6690-6701
    • Larochelle, M.1    Drouin, S.2    Robert, F.3    Turcotte, B.4
  • 34
    • 0025063371 scopus 로고
    • Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK3cXls1yksLk%3D
    • Miller, S. M. & Magasanik, B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol. 172, 4927–4935 (1990)
    • (1990) J. Bacteriol. , vol.172 , pp. 4927-4935
    • Miller, S.M.1    Magasanik, B.2
  • 35
    • 0032553314 scopus 로고    scopus 로고
    • Sources of NADPH and Expression of Mammalian NADP + -specific Isocitrate Dehydrogenases in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK1cXns1ensLs%3D
    • Minard, K. I., Jennings, G. T., Loftus, T. M., Xuan, D. & McAlister-Henn, L. Sources of NADPH and Expression of Mammalian NADP+ -specific Isocitrate Dehydrogenases in Saccharomyces cerevisiae. J. Biol. Chem. 273, 31486–31493 (1998)
    • (1998) J. Biol. Chem. , vol.273 , pp. 31486-31493
    • Minard, K.I.1    Jennings, G.T.2    Loftus, T.M.3    Xuan, D.4    McAlister-Henn, L.5
  • 36
    • 28044459402 scopus 로고    scopus 로고
    • The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD2MXhtFyis7jL
    • Lu, L., Roberts, G. G., Oszust, C. & Hudson, A. P. The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae. Curr. Genet. 48, 235–246 (2005)
    • (2005) Curr. Genet. , vol.48 , pp. 235-246
    • Lu, L.1    Roberts, G.G.2    Oszust, C.3    Hudson, A.P.4
  • 37
    • 84925244299 scopus 로고    scopus 로고
    • De novo production of the plant-derived alkaloid strictosidine in yeast
    • COI: 1:CAS:528:DC%2BC2MXitlagur8%3D
    • Brown, S., Clastre, M., Courdavault, V. & O’Connor, S. E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl. Acad. Sci. 112, 3205–3210 (2015)
    • (2015) Proc. Natl. Acad. Sci. , vol.112 , pp. 3205-3210
    • Brown, S.1    Clastre, M.2    Courdavault, V.3    O’Connor, S.E.4
  • 38
    • 84941874386 scopus 로고    scopus 로고
    • Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2MXhsFKqsrfK
    • Zhao, X., Shi, F. & Zhan, W. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 61, 354–360 (2015)
    • (2015) Lett. Appl. Microbiol. , vol.61 , pp. 354-360
    • Zhao, X.1    Shi, F.2    Zhan, W.3
  • 39
    • 35348981360 scopus 로고    scopus 로고
    • Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase
    • COI: 1:CAS:528:DC%2BD2sXht1amsr%2FK
    • Becker, J. et al. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J. Biotechnol. 132, 99–109 (2007)
    • (2007) J. Biotechnol. , vol.132 , pp. 99-109
    • Becker, J.1
  • 40
    • 33750623278 scopus 로고    scopus 로고
    • Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD28Xht1SgsbjO
    • Kwon, D.-H. et al. Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J. Mol. Catal., B Enzym. 43, 86–89 (2006)
    • (2006) J. Mol. Catal., B Enzym. , vol.43 , pp. 86-89
    • Kwon, D.-H.1
  • 41
    • 85028000268 scopus 로고    scopus 로고
    • Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2sXhtlylt7bF
    • Partow, S., Hyland, P. B. & Mahadevan, R. Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae. Metab. Eng. 43, 64–70 (2017)
    • (2017) Metab. Eng. , vol.43 , pp. 64-70
    • Partow, S.1    Hyland, P.B.2    Mahadevan, R.3
  • 42
    • 84953882390 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae
    • Bloem, A., Sanchez, I., Dequin, S. & Camarasa, C. Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 82, 174–183 (2015)
    • (2015) Appl. Environ. Microbiol. , vol.82 , pp. 174-183
    • Bloem, A.1    Sanchez, I.2    Dequin, S.3    Camarasa, C.4
  • 43
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003)
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 44
    • 0347506028 scopus 로고    scopus 로고
    • It is all about metabolic fluxes
    • COI: 1:CAS:528:DC%2BD3sXpvVaqs7k%3D
    • Nielsen, J. It is all about metabolic fluxes. J. Bacteriol. 185, 7031–7035 (2003)
    • (2003) J. Bacteriol. , vol.185 , pp. 7031-7035
    • Nielsen, J.1
  • 45
    • 84892747580 scopus 로고    scopus 로고
    • Producing aglycons of ginsenosides in bakers’ yeast
    • Dai, Z. et al. Producing aglycons of ginsenosides in bakers’ yeast. Sci. Rep. 4, 3698 (2014)
    • (2014) Sci. Rep. , vol.4
    • Dai, Z.1
  • 47
    • 0023392267 scopus 로고
    • A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains
    • COI: 1:CAS:528:DyaL2sXlsVymuro%3D
    • Alani, E., Cao, L. & Kleckner, N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541–545 (1987)
    • (1987) Genetics , vol.116 , pp. 541-545
    • Alani, E.1    Cao, L.2    Kleckner, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.