메뉴 건너뛰기




Volumn 17, Issue 1, 2018, Pages

Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer

Author keywords

Delta sequence integration; Glucaric acid; Metabolic engineering; miox4; Saccharomyces cerevisiae

Indexed keywords

INOSITOL; SACCHARIC ACID;

EID: 85046415139     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-018-0914-y     Document Type: Article
Times cited : (54)

References (41)
  • 2
    • 0029979194 scopus 로고    scopus 로고
    • d-Glucaric acid content of various fruits and vegetables and cholesterol-lowering effects of dietary d-glucarate in the rat
    • Walaszek Z, Szemraj J, Hanausek M, Adams AK, Sherman U. d-Glucaric acid content of various fruits and vegetables and cholesterol-lowering effects of dietary d-glucarate in the rat. Nutr Res. 1996;16:673-81.
    • (1996) Nutr Res , vol.16 , pp. 673-681
    • Walaszek, Z.1    Szemraj, J.2    Hanausek, M.3    Adams, A.K.4    Sherman, U.5
  • 3
    • 34250817515 scopus 로고    scopus 로고
    • Induction of apoptosis by calcium d-glucarate in 7,12-dimethyl benz [a] anthracene-exposed mouse skin
    • Singh J, Gupta KP. Induction of apoptosis by calcium d-glucarate in 7,12-dimethyl benz [a] anthracene-exposed mouse skin. J Environ Pathol Toxicol Oncol. 2007;26:63-73.
    • (2007) J Environ Pathol Toxicol Oncol , vol.26 , pp. 63-73
    • Singh, J.1    Gupta, K.P.2
  • 4
    • 0028368312 scopus 로고
    • Hydroxylated nylons based on unprotected esterified d-glucaric acid by simple condensation reactions
    • Donald EK, Chen L, Lin TH. Hydroxylated nylons based on unprotected esterified d-glucaric acid by simple condensation reactions. J Am Chem Soc. 1993;116:571-8.
    • (1993) J Am Chem Soc , vol.116 , pp. 571-578
    • Donald, E.K.1    Chen, L.2    Lin, T.H.3
  • 6
    • 77950863739 scopus 로고    scopus 로고
    • Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli
    • Moon TS, Dueber JE, Shiue E, Prather KL. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng. 2010;12:298-305.
    • (2010) Metab Eng , vol.12 , pp. 298-305
    • Moon, T.S.1    Dueber, J.E.2    Shiue, E.3    Prather, K.L.4
  • 7
    • 84891045972 scopus 로고    scopus 로고
    • Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport
    • Shiue E, Prather KL. Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab Eng. 2014;22:22-31.
    • (2014) Metab Eng , vol.22 , pp. 22-31
    • Shiue, E.1    Prather, K.L.2
  • 8
    • 84985916761 scopus 로고    scopus 로고
    • Porting the synthetic d-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae
    • Gupta A, Hicks MA, Manchester SP, Prather KL. Porting the synthetic d-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Biotechnol J. 2016;11:1201-8.
    • (2016) Biotechnol J , vol.11 , pp. 1201-1208
    • Gupta, A.1    Hicks, M.A.2    Manchester, S.P.3    Prather, K.L.4
  • 9
    • 84973102495 scopus 로고    scopus 로고
    • Production of glucaric acid from myo-inositol in engineered Pichia pastoris
    • Liu Y, Gong X, Wang C, Du G, Chen J, Kang Z. Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme Microb Technol. 2016;91:8-16.
    • (2016) Enzyme Microb Technol , vol.91 , pp. 8-16
    • Liu, Y.1    Gong, X.2    Wang, C.3    Du, G.4    Chen, J.5    Kang, Z.6
  • 10
    • 1642506227 scopus 로고    scopus 로고
    • myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis
    • Lorence A, Chevone BI, Mendes P, Nessler CL. myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 2004;134:1200-5.
    • (2004) Plant Physiol , vol.134 , pp. 1200-1205
    • Lorence, A.1    Chevone, B.I.2    Mendes, P.3    Nessler, C.L.4
  • 11
    • 0033857816 scopus 로고    scopus 로고
    • Ascorbic Acid in plants: biosynthesis and function
    • Smirnoff N, Wheeler GL. Ascorbic Acid in plants: biosynthesis and function. Crit Rev Plant Sci. 2000;19:267-90.
    • (2000) Crit Rev Plant Sci , vol.19 , pp. 267-290
    • Smirnoff, N.1    Wheeler, G.L.2
  • 12
    • 85030851820 scopus 로고    scopus 로고
    • YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica
    • Wong L, Engel J, Jin E, Holdridge B, Xu P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun. 2017;5:68-77.
    • (2017) Metab Eng Commun , vol.5 , pp. 68-77
    • Wong, L.1    Engel, J.2    Jin, E.3    Holdridge, B.4    Xu, P.5
  • 14
    • 84893482649 scopus 로고    scopus 로고
    • Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
    • Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol. 2014;156:232-9.
    • (2014) Bioresour Technol , vol.156 , pp. 232-239
    • Yan, D.1    Wang, C.2    Zhou, J.3    Liu, Y.4    Yang, M.5    Xing, J.6
  • 15
    • 84989918349 scopus 로고    scopus 로고
    • Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
    • Xu P, Qiao KJ, Ahn WS, Stephanopoulos G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci USA. 2016;113:10848-53.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 10848-10853
    • Xu, P.1    Qiao, K.J.2    Ahn, W.S.3    Stephanopoulos, G.4
  • 16
    • 85018602315 scopus 로고    scopus 로고
    • Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
    • Xu P, Qiao K, Stephanopoulos G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng. 2017;114:1521-30.
    • (2017) Biotechnol Bioeng , vol.114 , pp. 1521-1530
    • Xu, P.1    Qiao, K.2    Stephanopoulos, G.3
  • 17
    • 0030882849 scopus 로고    scopus 로고
    • Improved efficiency and stability of multiple cloned gene insertions at the d sequences of Saccharomyces cerevisiae
    • Lee FWF, Silva NAD. Improved efficiency and stability of multiple cloned gene insertions at the d sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1997;48:339-45.
    • (1997) Appl Microbiol Biotechnol , vol.48 , pp. 339-345
    • Lee, F.W.F.1    Silva, N.A.D.2
  • 18
    • 62649130286 scopus 로고    scopus 로고
    • Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58
    • Yoon SH, Moon TS, Iranpour P, Lanza AM, Prather KJ. Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58. J Bacteriol. 2009;191:1565-73.
    • (2009) J Bacteriol , vol.191 , pp. 1565-1573
    • Yoon, S.H.1    Moon, T.S.2    Iranpour, P.3    Lanza, A.M.4    Prather, K.J.5
  • 19
    • 79952114061 scopus 로고    scopus 로고
    • Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae
    • Chen FJ, Zhou JW, Shi ZP, Liu LM, Du GC, Chen J. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Acta Microbiol Sin. 2010;50:1172-9.
    • (2010) Acta Microbiol Sin , vol.50 , pp. 1172-1179
    • Chen, F.J.1    Zhou, J.W.2    Shi, Z.P.3    Liu, L.M.4    Du, G.C.5    Chen, J.6
  • 20
    • 0034075621 scopus 로고    scopus 로고
    • Regulation of the yeast INO1 gene: the products of INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol
    • Graves JA, Henry SA. Regulation of the yeast INO1 gene: the products of INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics. 1999;154:1485-95.
    • (1999) Genetics , vol.154 , pp. 1485-1495
    • Graves, J.A.1    Henry, S.A.2
  • 21
    • 84883141602 scopus 로고    scopus 로고
    • Regulation of inositol metabolism is fine-tuned by inositol pyrophosphates in Saccharomyces cerevisiae
    • Ye C, Bandara WM, Greenberg ML. Regulation of inositol metabolism is fine-tuned by inositol pyrophosphates in Saccharomyces cerevisiae. J Biol Chem. 2013;288:24898-908.
    • (2013) J Biol Chem , vol.288 , pp. 24898-24908
    • Ye, C.1    Bandara, W.M.2    Greenberg, M.L.3
  • 22
    • 80052919515 scopus 로고    scopus 로고
    • Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae
    • Hegemann JH, Heick SB. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol. 2011;765:189-206.
    • (2011) Methods Mol Biol , vol.765 , pp. 189-206
    • Hegemann, J.H.1    Heick, S.B.2
  • 23
    • 34347260322 scopus 로고    scopus 로고
    • Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
    • Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:1-4.
    • (2007) Nat Protoc , vol.2 , pp. 1-4
    • Gietz, R.D.1    Schiestl, R.H.2
  • 24
    • 0021668558 scopus 로고
    • A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance
    • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197:345-6.
    • (1984) Mol Gen Genet , vol.197 , pp. 345-346
    • Boeke, J.D.1    LaCroute, F.2    Fink, G.R.3
  • 25
    • 0030019291 scopus 로고    scopus 로고
    • An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae
    • Parekh RN, Shaw MR, Wittrup KD. An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae. Biotechnol Prog. 1996;12:16-21.
    • (1996) Biotechnol Prog , vol.12 , pp. 16-21
    • Parekh, R.N.1    Shaw, M.R.2    Wittrup, K.D.3
  • 26
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran KA, Leavitt JM, Karim AS, Alper HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng. 2013;15:55-66.
    • (2013) Metab Eng , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 27
    • 0007003379 scopus 로고
    • Biochemical studies on inositol: IV. Conversion of inositol to glucuronic acid by rat kidney extracts
    • Charalampous FC, Lyras C. Biochemical studies on inositol: IV. Conversion of inositol to glucuronic acid by rat kidney extracts. J Biol Chem. 1957;228:1-13.
    • (1957) J Biol Chem , vol.228 , pp. 1-13
    • Charalampous, F.C.1    Lyras, C.2
  • 28
    • 0019888336 scopus 로고
    • myo-Inositol oxygenase from hog kidney: II. Catalytic properties of the homogeneous enzyme
    • Reddy CC, Pierzchala PA, Hamilton GA. myo-Inositol oxygenase from hog kidney: II. Catalytic properties of the homogeneous enzyme. J Biol Chem. 1981;256:8519-24.
    • (1981) J Biol Chem , vol.256 , pp. 8519-8524
    • Reddy, C.C.1    Pierzchala, P.A.2    Hamilton, G.A.3
  • 29
    • 0019888309 scopus 로고
    • myo-Inositol oxygenase from hog kidney: I. Purification and characterization of the oxygenase and of an enzyme containing the oxygenase and d-glucuronate reductase
    • Reddy CC, Swan JS, Hamilton GA. myo-Inositol oxygenase from hog kidney: I. Purification and characterization of the oxygenase and of an enzyme containing the oxygenase and d-glucuronate reductase. J Biol Chem. 1981;256:8510-8.
    • (1981) J Biol Chem , vol.256 , pp. 8510-8518
    • Reddy, C.C.1    Swan, J.S.2    Hamilton, G.A.3
  • 30
    • 0035587071 scopus 로고    scopus 로고
    • myo-Inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and d-chiro-inositol
    • Arner RJ, Prabhu KS, Thompson JT, Hildenbrandt GR, Liken AD, Reddy CC. myo-Inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and d-chiro-inositol. Biochem J. 2001;360:313-20.
    • (2001) Biochem J. , vol.360 , pp. 313-320
    • Arner, R.J.1    Prabhu, K.S.2    Thompson, J.T.3    Hildenbrandt, G.R.4    Liken, A.D.5    Reddy, C.C.6
  • 31
    • 84896908524 scopus 로고    scopus 로고
    • Detection of Saccharomyces cerevisiae Atg13 by western blot
    • Miller-Fleming L, Cheong H, Antas P, Klionsky DJ. Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy. 2014;10:514-7.
    • (2014) Autophagy , vol.10 , pp. 514-517
    • Miller-Fleming, L.1    Cheong, H.2    Antas, P.3    Klionsky, D.J.4
  • 32
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
    • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402-8.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 33
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D, Muller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119-22.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 34
    • 14344261707 scopus 로고    scopus 로고
    • Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney
    • Arner RJ, Prabhu KS, Reddy CC. Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney. Biochem Biophys Res Commun. 2004;324:1386-92.
    • (2004) Biochem Biophys Res Commun , vol.324 , pp. 1386-1392
    • Arner, R.J.1    Prabhu, K.S.2    Reddy, C.C.3
  • 35
    • 0014806678 scopus 로고
    • Protein Purification by affinity chromatography: derivatizations of agarose and polyacrylamide beads
    • Cuatrecasas P. Protein Purification by affinity chromatography: derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970;245:3059-65.
    • (1970) J Biol Chem , vol.245 , pp. 3059-3065
    • Cuatrecasas, P.1
  • 36
    • 84897989500 scopus 로고    scopus 로고
    • The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast
    • Henry SA, Gaspar ML, Jesch SA. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids. 2014;180:23-43.
    • (2014) Chem Phys Lipids , vol.180 , pp. 23-43
    • Henry, S.A.1    Gaspar, M.L.2    Jesch, S.A.3
  • 38
    • 0342472225 scopus 로고    scopus 로고
    • Carbohydrate and energy-yielding metabolism in non-conventional yeasts
    • Flores CL, Rodriguez C, Petit T, Gancedo C. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev. 2000;24:507-29.
    • (2000) FEMS Microbiol Rev , vol.24 , pp. 507-529
    • Flores, C.L.1    Rodriguez, C.2    Petit, T.3    Gancedo, C.4
  • 39
    • 0030001104 scopus 로고    scopus 로고
    • Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae
    • Casal M, Cardoso H, Leao C. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology. 1996;142:1385-90.
    • (1996) Microbiology , vol.142 , pp. 1385-1390
    • Casal, M.1    Cardoso, H.2    Leao, C.3
  • 40
    • 85034039076 scopus 로고    scopus 로고
    • Production of chemicals using dynamic control of metabolic fluxes
    • Xu P. Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol. 2017;53:12-9.
    • (2017) Curr Opin Biotechnol , vol.53 , pp. 12-19
    • Xu, P.1
  • 41
    • 0030063630 scopus 로고
    • Inositol transport in Saccharomyces cerevisiae is regulated by transcriptional and degradative endocytic mechanisms during the growth cycle that are distinct from inositol-induced regulation
    • Robinson KS, Lai K, Cannon TA, McGraw P. Inositol transport in Saccharomyces cerevisiae is regulated by transcriptional and degradative endocytic mechanisms during the growth cycle that are distinct from inositol-induced regulation. Mol Biol Cell. 1995;7:81-9.
    • (1995) Mol Biol Cell , vol.7 , pp. 81-89
    • Robinson, K.S.1    Lai, K.2    Cannon, T.A.3    McGraw, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.