메뉴 건너뛰기




Volumn 113, Issue 8, 2016, Pages 1787-1795

Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae

Author keywords

dammarenediol II; protopanaxadiol; protopanaxadiol synthase; Saccharomyces cerevisiae; self sufficient P450s; synthetic biology

Indexed keywords

ACTIVATION ANALYSIS; CATALYST ACTIVITY; FERMENTATION; PLANTS (BOTANY); PROTEINS;

EID: 84977124867     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.25934     Document Type: Article
Times cited : (93)

References (39)
  • 5
    • 0345490814 scopus 로고    scopus 로고
    • Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT
    • Chen YJ, Yu P, Luo JC, Jiang Y. 2003. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14:859–865.
    • (2003) Mamm Genome , vol.14 , pp. 859-865
    • Chen, Y.J.1    Yu, P.2    Luo, J.C.3    Jiang, Y.4
  • 7
    • 84920253529 scopus 로고    scopus 로고
    • Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation
    • Choi KY, Jung E, Yun H, Yang YH, Kim BG. 2014. Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Appl Microbiol Biotechnol 98:8191–8200.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 8191-8200
    • Choi, K.Y.1    Jung, E.2    Yun, H.3    Yang, Y.H.4    Kim, B.G.5
  • 8
    • 50349101675 scopus 로고    scopus 로고
    • Ginsenosides chemistry, biosynthesis, analysis, and potential health effects
    • Christensen LP. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99.
    • (2009) Adv Food Nutr Res , vol.55 , pp. 1-99
    • Christensen, L.P.1
  • 12
    • 84877352026 scopus 로고    scopus 로고
    • Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae
    • Gavira C, Höfer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D. 2013. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng 18:25–35.
    • (2013) Metab Eng , vol.18 , pp. 25-35
    • Gavira, C.1    Höfer, R.2    Lesot, A.3    Lambert, F.4    Zucca, J.5    Werck-Reichhart, D.6
  • 13
    • 84883535579 scopus 로고    scopus 로고
    • Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker
    • Haga T, Hirakawa H, Nagamune T. 2013. Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker. PLoS ONE 8:e75114.
    • (2013) PLoS ONE , vol.8
    • Haga, T.1    Hirakawa, H.2    Nagamune, T.3
  • 14
    • 83255165496 scopus 로고    scopus 로고
    • The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng
    • Han JY, Kim HJ, Kwon YS, Choi YE. 2011. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073.
    • (2011) Plant Cell Physiol , vol.52 , pp. 2062-2073
    • Han, J.Y.1    Kim, H.J.2    Kwon, Y.S.3    Choi, Y.E.4
  • 15
  • 16
    • 80052135332 scopus 로고    scopus 로고
    • Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution
    • Kille S, Zilly FE, Acevedo JP, Reetz MT. 2011. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 3:738–743.
    • (2011) Nat Chem , vol.3 , pp. 738-743
    • Kille, S.1    Zilly, F.E.2    Acevedo, J.P.3    Reetz, M.T.4
  • 18
    • 36649037393 scopus 로고    scopus 로고
    • Engineering of Artificial Plant Cytochrome P450 Enzymes for Synthesis of Isoflavones by Escherichia coli
    • Leonard E, Koffas MAG. 2007. Engineering of Artificial Plant Cytochrome P450 Enzymes for Synthesis of Isoflavones by Escherichia coli. Appl Environ Microbiol 73:7246–7251.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 7246-7251
    • Leonard, E.1    Koffas, M.A.G.2
  • 19
    • 84879840761 scopus 로고    scopus 로고
    • Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress
    • Liu JD, Zhu YB, Du GC, Zhou JW, Jian C. 2013. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress. Appl Microbiol Biotechnol 97:6467–6475.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 6467-6475
    • Liu, J.D.1    Zhu, Y.B.2    Du, G.C.3    Zhou, J.W.4    Jian, C.5
  • 23
    • 77249097864 scopus 로고    scopus 로고
    • Identification and characterisation of CYP75A31, a new flavonoid 3′5′-hydroxylase, isolated from Solanum lycopersicum
    • Olsen KM, Hehn A, Jugde H, Slimestad R, Larbat R, Bourgaud F, Lillo C. 2010. Identification and characterisation of CYP75A31, a new flavonoid 3′5′-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biol 10:21.
    • (2010) BMC Plant Biol , vol.10 , pp. 21
    • Olsen, K.M.1    Hehn, A.2    Jugde, H.3    Slimestad, R.4    Larbat, R.5    Bourgaud, F.6    Lillo, C.7
  • 24
    • 78651165715 scopus 로고
    • The carbon monoxide-binding pigmet of liver microsomes. I. Evidence for its hemoprotein nature
    • Omura T, Sato R. 1964. The carbon monoxide-binding pigmet of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378.
    • (1964) J Biol Chem , vol.239 , pp. 2370-2378
    • Omura, T.1    Sato, R.2
  • 26
    • 84897553187 scopus 로고    scopus 로고
    • Cytochrome P450 mediated metabolic engineering: Current progress and future challenges
    • Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. 2014. Cytochrome P450 mediated metabolic engineering: Current progress and future challenges. Curr Opin Plant Biol 19:27–34.
    • (2014) Curr Opin Plant Biol , vol.19 , pp. 27-34
    • Renault, H.1    Bassard, J.E.2    Hamberger, B.3    Werck-Reichhart, D.4
  • 27
    • 84874048801 scopus 로고    scopus 로고
    • Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications
    • Sadeghi SJ, Gilardi G. 2013. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Bioc 60:102–110.
    • (2013) Biotechnol Appl Bioc , vol.60 , pp. 102-110
    • Sadeghi, S.J.1    Gilardi, G.2
  • 28
    • 84871197071 scopus 로고    scopus 로고
    • A gene-fusion approach to enabling plant cytochromes p450 for biocatalysis
    • Schuckel J, Rylott EL, Grogan G, Bruce NC. 2012. A gene-fusion approach to enabling plant cytochromes p450 for biocatalysis. Chembiochem 13:2758–2763.
    • (2012) Chembiochem , vol.13 , pp. 2758-2763
    • Schuckel, J.1    Rylott, E.L.2    Grogan, G.3    Bruce, N.C.4
  • 29
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao ZY, Zhao H, Zhao HM. 2009. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16.
    • (2009) Nucleic Acids Res , vol.37
    • Shao, Z.Y.1    Zhao, H.2    Zhao, H.M.3
  • 30
    • 77951121533 scopus 로고    scopus 로고
    • De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis
    • Sun C, Li Y, Wu Q, Luo HM, Sun YZ, Song JY, Lui EM, Chen SL. 2010. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262.
    • (2010) BMC Genomics , vol.11 , pp. 262
    • Sun, C.1    Li, Y.2    Wu, Q.3    Luo, H.M.4    Sun, Y.Z.5    Song, J.Y.6    Lui, E.M.7    Chen, S.L.8
  • 31
    • 33748809553 scopus 로고    scopus 로고
    • Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng
    • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y. 2006. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149.
    • (2006) FEBS Lett , vol.580 , pp. 5143-5149
    • Tansakul, P.1    Shibuya, M.2    Kushiro, T.3    Ebizuka, Y.4
  • 32
    • 84355163053 scopus 로고    scopus 로고
    • Cytochrome P450 monooxygenases: An update on perspectives for synthetic application
    • Urlacher VB, Girhard M. 2012. Cytochrome P450 monooxygenases: An update on perspectives for synthetic application. Trends Biotechnol 30:26–36.
    • (2012) Trends Biotechnol , vol.30 , pp. 26-36
    • Urlacher, V.B.1    Girhard, M.2
  • 34
    • 84906337960 scopus 로고    scopus 로고
    • The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast
    • Wang L, Zhao SJ, Cao HJ, Sun Y. 2014. The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast. Funct Integr Genomics 14:545–557.
    • (2014) Funct Integr Genomics , vol.14 , pp. 545-557
    • Wang, L.1    Zhao, S.J.2    Cao, H.J.3    Sun, Y.4
  • 37
    • 4444268690 scopus 로고    scopus 로고
    • Mechanisms that regulate production of reactive oxygen species by cytochrome P450
    • Zangar RC, Davydov DR, Verma S. 2004. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharm 199:316–331.
    • (2004) Toxicol Appl Pharm , vol.199 , pp. 316-331
    • Zangar, R.C.1    Davydov, D.R.2    Verma, S.3
  • 38
    • 84910092004 scopus 로고    scopus 로고
    • Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa
    • Zhang XM, Xue CY, Zhao FL, Li DS, Yin J, Zhang CB, Caiyin Q, Lu WY. 2014. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa. Microb Cell Fact 13:98.
    • (2014) Microb Cell Fact , vol.13 , pp. 98
    • Zhang, X.M.1    Xue, C.Y.2    Zhao, F.L.3    Li, D.S.4    Yin, J.5    Zhang, C.B.6    Caiyin, Q.7    Lu, W.Y.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.