메뉴 건너뛰기




Volumn 10, Issue 463, 2018, Pages

Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis

(20)  Fonseka, Chamith Y a,b,c   Rao, Deepak A a   Teslovich, Nikola C a   Korsunsky, Ilya a   Hannes, Susan K a   Slowikowski, Kamil a,b,c   Gurish, Michael F a   Donlin, Laura T d,e   Lederer, James A a   Weinblatt, Michael E a   Massarotti, Elena M a   Coblyn, Jonathan S a   Helfgott, Simon M a   Todd, Derrick J a   Bykerk, Vivian P d,e   Karlson, Elizabeth W a   Ermann, Joerg a   Lee, Yvonne C a,f   Brenner, Michael B a   Raychaudhuri, Soumya a,c,g  


Author keywords

[No Author keywords available]

Indexed keywords

CHEMOKINE RECEPTOR CCR5; CHEMOKINE RECEPTOR CCR7; CHEMOKINE RECEPTOR CXCR3; GAMMA INTERFERON; GRANZYME A; TRANSCRIPTION FACTOR T BET; CD27 ANTIGEN; HLA DR ANTIGEN; TRANSCRIPTOME;

EID: 85055050337     PISSN: 19466234     EISSN: 19466242     Source Type: Journal    
DOI: 10.1126/scitranslmed.aaq0305     Document Type: Article
Times cited : (113)

References (73)
  • 1
    • 85009787124 scopus 로고    scopus 로고
    • Single-cell genomics: Approaches and utility in immunology
    • K. E. Neu, Q. Tang, P. C. Wilson, A. A. Khan, Single-cell genomics: Approaches and utility in immunology. Trends Immunol. 38, 140–149 (2017).
    • (2017) Trends Immunol , vol.38 , pp. 140-149
    • Neu, K.E.1    Tang, Q.2    Wilson, P.C.3    Khan, A.A.4
  • 3
  • 5
    • 84894096187 scopus 로고    scopus 로고
    • T cell subsets and their role in the pathogenesis of rheumatic disease
    • A. M. Gizinski, D. A. Fox, T cell subsets and their role in the pathogenesis of rheumatic disease. Curr. Opin. Rheumatol. 26, 204–210 (2014).
    • (2014) Curr. Opin. Rheumatol. , vol.26 , pp. 204-210
    • Gizinski, A.M.1    Fox, D.A.2
  • 6
    • 84862644604 scopus 로고    scopus 로고
    • The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis
    • W. Wang, S. Shao, Z. Jiao, M. Guo, H. Xu, S. Wang, The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol. Int. 32, 887–893 (2012).
    • (2012) Rheumatol. Int. , vol.32 , pp. 887-893
    • Wang, W.1    Shao, S.2    Jiao, Z.3    Guo, M.4    Xu, H.5    Wang, S.6
  • 8
    • 80051669014 scopus 로고    scopus 로고
    • An overview on the genetic of rheumatoid arthritis: A never-ending story
    • C. Perricone, F. Ceccarelli, G. Valesini, An overview on the genetic of rheumatoid arthritis: A never-ending story. Autoimmun. Rev. 10, 599–608 (2011).
    • (2011) Autoimmun. Rev. , vol.10 , pp. 599-608
    • Perricone, C.1    Ceccarelli, F.2    Valesini, G.3
  • 9
    • 84890162458 scopus 로고    scopus 로고
    • Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: Recent findings and challenges
    • D. Diogo, Y. Okada, R. M. Plenge, Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: Recent findings and challenges. Curr. Opin. Rheumatol. 26, 85–92 (2014).
    • (2014) Curr. Opin. Rheumatol. , vol.26 , pp. 85-92
    • Diogo, D.1    Okada, Y.2    Plenge, R.M.3
  • 12
    • 80053896562 scopus 로고    scopus 로고
    • Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets
    • X. Hu, H. Kim, E. Stahl, R. Plenge, M. Daly, S. Raychaudhuri, Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 496-506
    • Hu, X.1    Kim, H.2    Stahl, E.3    Plenge, R.4    Daly, M.5    Raychaudhuri, S.6
  • 14
    • 0030980997 scopus 로고    scopus 로고
    • Expansion of unusual CD4+ T cells in severe rheumatoid arthritis
    • P. B. Martens, J. J. Goronzy, D. Schaid, C. M. Weyand, Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum. 40, 1106–1114 (1997).
    • (1997) Arthritis Rheum , vol.40 , pp. 1106-1114
    • Martens, P.B.1    Goronzy, J.J.2    Schaid, D.3    Weyand, C.M.4
  • 15
    • 77951785328 scopus 로고    scopus 로고
    • Decreased circulating CD28-negative T cells in patients with rheumatoid arthritis treated with abatacept are correlated with clinical response
    • M. Scarsi, T. Ziglioli, P. Airò, Decreased circulating CD28-negative T cells in patients with rheumatoid arthritis treated with abatacept are correlated with clinical response. J. Rheumatol. 37, 911–916 (2010).
    • (2010) J. Rheumatol. , vol.37 , pp. 911-916
    • Scarsi, M.1    Ziglioli, T.2    Airò, P.3
  • 16
    • 0035147101 scopus 로고    scopus 로고
    • CD4+,CD28- T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems
    • K. J. Warrington, S. Takemura, J. J. Goronzy, C. M. Weyand, CD4+,CD28- T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis Rheum. 44, 13–20 (2001).
    • (2001) Arthritis Rheum , vol.44 , pp. 13-20
    • Warrington, K.J.1    Takemura, S.2    Goronzy, J.J.3    Weyand, C.M.4
  • 17
    • 85028760069 scopus 로고    scopus 로고
    • Leveraging blood and tissue CD4+ T cell heterogeneity at the single cell level to identify mechanisms of disease in rheumatoid arthritis
    • C. Y. Fonseka, D. A. Rao, S. Raychaudhuri, Leveraging blood and tissue CD4+ T cell heterogeneity at the single cell level to identify mechanisms of disease in rheumatoid arthritis. Curr. Opin. Immunol. 49, 27–36 (2017).
    • (2017) Curr. Opin. Immunol. , vol.49 , pp. 27-36
    • Fonseka, C.Y.1    Rao, D.A.2    Raychaudhuri, S.3
  • 19
    • 84932194111 scopus 로고    scopus 로고
    • ImmunoClust—An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
    • T. Sörensen, S. Baumgart, P. Durek, A. Grützkau, T. Häupl, immunoClust—An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry 87, 603–615 (2015).
    • (2015) Cytometry , vol.87 , pp. 603-615
    • Sörensen, T.1    Baumgart, S.2    Durek, P.3    Grützkau, A.4    Häupl, T.5
  • 20
  • 21
    • 85016502564 scopus 로고    scopus 로고
    • CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    • P. Lin, M. Troup, J. W. K. Ho, CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18, 59 (2017).
    • (2017) Genome Biol , vol.18 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.K.3
  • 27
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • L. van der Maaten, Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3221-3245
    • Van Der Maaten, L.1
  • 29
    • 85006826083 scopus 로고    scopus 로고
    • Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data
    • L. M. Weber, M. D. Robinson, Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89, 1084–1096 (2016).
    • (2016) Cytometry A , vol.89 , pp. 1084-1096
    • Weber, L.M.1    Robinson, M.D.2
  • 31
    • 84954104516 scopus 로고    scopus 로고
    • Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding
    • Y. Cheng, M. T. Wong, L. van der Maaten, E. W. Newell, Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding. J. Immunol. 196, 924–932 (2016).
    • (2016) J. Immunol. , vol.196 , pp. 924-932
    • Cheng, Y.1    Wong, M.T.2    Van Der Maaten, L.3    Newell, E.W.4
  • 33
    • 33645778289 scopus 로고    scopus 로고
    • MHC class II expression identifies functionally distinct human regulatory T cells
    • C. Baecher-Allan, E. Wolf, D. A. Hafler, MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 176, 4622–4631 (2006).
    • (2006) J. Immunol. , vol.176 , pp. 4622-4631
    • Baecher-Allan, C.1    Wolf, E.2    Hafler, D.A.3
  • 35
    • 0025190144 scopus 로고
    • Selective expression of class II MHC isotypes by MLC-activated human T lymphocytes
    • S. Oshima, D. D. Eckels, Selective expression of class II MHC isotypes by MLC-activated human T lymphocytes. Hum. Immunol. 27, 208–219 (1990).
    • (1990) Hum. Immunol. , vol.27 , pp. 208-219
    • Oshima, S.1    Eckels, D.D.2
  • 36
    • 23944478301 scopus 로고    scopus 로고
    • Acute phase reactants add little to composite disease activity indices for rheumatoid arthritis: Validation of a clinical activity score
    • D. Aletaha, V. P. K. Nell, T. Stamm, M. Uffmann, S. Pflugbeil, K. Machold, J. S. Smolen, Acute phase reactants add little to composite disease activity indices for rheumatoid arthritis: Validation of a clinical activity score. Arthritis Res. Ther. 7, R796–R806 (2005).
    • (2005) Arthritis Res. Ther. , vol.7 , pp. R796-R806
    • Aletaha, D.1    Nell, V.P.K.2    Stamm, T.3    Uffmann, M.4    Pflugbeil, S.5    Machold, K.6    Smolen, J.S.7
  • 40
    • 84963756186 scopus 로고    scopus 로고
    • High-dimensional analysis of acute myeloid leukemia reveals phenotypic changes in persistent cells during induction therapy
    • P. B. Ferrell Jr., K. E. Diggins, H. G. Polikowsky, S. R. Mohan, A. C. Seegmiller, J. M. Irish, High-dimensional analysis of acute myeloid leukemia reveals phenotypic changes in persistent cells during induction therapy. PLOS ONE 11, e0153207 (2016).
    • (2016) PLOS ONE , vol.11 , pp. e0153207
    • Ferrell, P.B.1    Diggins, K.E.2    Polikowsky, H.G.3    Mohan, S.R.4    Seegmiller, A.C.5    Irish, J.M.6
  • 43
    • 84961911828 scopus 로고    scopus 로고
    • Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma
    • L. Hansmann, L. Blum, C.-H. Ju, M. Liedtke, W. H. Robinson, M. M. Davis, Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma. Cancer Immunol. Res. 3, 650–660 (2015).
    • (2015) Cancer Immunol. Res. , vol.3 , pp. 650-660
    • Hansmann, L.1    Blum, L.2    Ju, C.-H.3    Liedtke, M.4    Robinson, W.H.5    Davis, M.M.6
  • 46
    • 84975122314 scopus 로고    scopus 로고
    • Computational flow cytometry: Helping to make sense of high-dimensional immunology data
    • Y. Saeys, S. Van Gassen, B. N. Lambrecht, Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 449-462
    • Saeys, Y.1    Van Gassen, S.2    Lambrecht, B.N.3
  • 47
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • A. Wagner, A. Regev, N. Yosef, Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 48
    • 84937685382 scopus 로고    scopus 로고
    • Algorithmic tools for mining high-dimensional cytometry data
    • C. Chester, H. T. Maecker, Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 195, 773–779 (2015).
    • (2015) J. Immunol. , vol.195 , pp. 773-779
    • Chester, C.1    Maecker, H.T.2
  • 49
    • 85039072501 scopus 로고    scopus 로고
    • Science not art: Statistically sound methods for identifying subsets in multi-dimensional flow and mass cytometry data sets
    • D. Y. Orlova, L. A. Herzenberg, G. Walther, Science not art: Statistically sound methods for identifying subsets in multi-dimensional flow and mass cytometry data sets. Nat. Rev. Immunol. 18, 77 (2017).
    • (2017) Nat. Rev. Immunol. , vol.18 , pp. 77
    • Orlova, D.Y.1    Herzenberg, L.A.2    Walther, G.3
  • 50
    • 85039041391 scopus 로고    scopus 로고
    • Response to Orlova et al. “Science not art: Statistically sound methods for identifying subsets in multi-dimensional flow and mass cytometry data sets
    • Y. Saeys, S. Van Gassen, B. Lambrecht, Response to Orlova et al. “Science not art: Statistically sound methods for identifying subsets in multi-dimensional flow and mass cytometry data sets”. Nat. Rev. Immunol. 18, 78 (2017).
    • (2017) Nat. Rev. Immunol. , vol.18 , pp. 78
    • Saeys, Y.1    Van Gassen, S.2    Lambrecht, B.3
  • 51
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • X. Qiu, A. Hill, J. Packer, D. Lin, Y.-A. Ma, C. Trapnell, Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 309-315
    • Qiu, X.1    Hill, A.2    Packer, J.3    Lin, D.4    Ma, Y.-A.5    Trapnell, C.6
  • 52
    • 84890832543 scopus 로고    scopus 로고
    • From “truly naïve” to “exhausted senescent” T cells: When markers predict functionality
    • A. Larbi, T. Fulop, From “truly naïve” to “exhausted senescent” T cells: When markers predict functionality. Cytometry A 85, 25–35 (2014).
    • (2014) Cytometry A , vol.85 , pp. 25-35
    • Larbi, A.1    Fulop, T.2
  • 57
    • 0032417125 scopus 로고    scopus 로고
    • Functional subsets of CD4 T cells in rheumatoid synovitis
    • T. Namekawa, U. G. Wagner, J. J. Goronzy, C. M. Weyand, Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 41, 2108–2116 (1998).
    • (1998) Arthritis Rheum , vol.41 , pp. 2108-2116
    • Namekawa, T.1    Wagner, U.G.2    Goronzy, J.J.3    Weyand, C.M.4
  • 69
    • 84989347290 scopus 로고    scopus 로고
    • Cytofkit: A bioconductor package for an integrated mass cytometry data analysis pipeline
    • H. Chen, M. C. Lau, M. T. Wong, E. W. Newell, M. Poidinger, J. Chen, Cytofkit: A bioconductor package for an integrated mass cytometry data analysis pipeline. PLOS Comput. Biol. 12, e1005112 (2016).
    • (2016) PLOS Comput. Biol. , vol.12 , pp. e1005112
    • Chen, H.1    Lau, M.C.2    Wong, M.T.3    Newell, E.W.4    Poidinger, M.5    Chen, J.6
  • 73
    • 85010390664 scopus 로고    scopus 로고
    • Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models
    • L. Scrucca, M. Fop, T. B. Murphy, A. E. Raftery, mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317 (2016).
    • (2016) R J , vol.8 , pp. 289-317
    • Scrucca, L.1    Fop, M.2    Murphy, T.B.3    Raftery, A.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.