메뉴 건너뛰기




Volumn 8, Issue 1, 2016, Pages 289-317

Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85010390664     PISSN: None     EISSN: 20734859     Source Type: Journal    
DOI: 10.32614/rj-2016-021     Document Type: Article
Times cited : (1957)

References (67)
  • 1
    • 84856199537 scopus 로고    scopus 로고
    • Model-based clustering and typologies in the social sciences
    • J. S. Ahlquist and C. Breunig. Model-based clustering and typologies in the social sciences. Political Analysis, 20(1):92-112, 2012
    • (2012) Political Analysis , vol.20 , Issue.1 , pp. 92-112
    • Ahlquist, J.S.1    Breunig, C.2
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J. Banfield and A. E. Raftery. Model-based Gaussian and non-Gaussian clustering. Biometrics, 49: 803-821, 1993
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.E.2
  • 5
    • 70450203033 scopus 로고    scopus 로고
    • mixtools: An R package for analyzing finite mixture models
    • T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009. URL http://www.jstatsoft.org/v32/i06/
    • (2009) Journal of Statistical Software , vol.32 , Issue.6 , pp. 1-29
    • Benaglia, T.1    Chauveau, D.2    Hunter, D.R.3    Young, D.4
  • 6
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • H. Bensmail and G. Celeux. Regularized Gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association, 91:1743-1748, 1996
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 7
    • 84863316146 scopus 로고    scopus 로고
    • The R package bgmm: Mixture modeling with uncertain knowledge
    • P. Biecek, E. Szczurek, M. Vingron, and J. Tiuryn. The R package bgmm: Mixture modeling with uncertain knowledge. Journal of Statistical Software, 47(3):1-32, 2012. URL http://www.jstatsoft. org/v47/i03/
    • (2012) Journal of Statistical Software , vol.47 , Issue.3 , pp. 1-32
    • Biecek, P.1    Szczurek, E.2    Vingron, M.3    Tiuryn, J.4
  • 13
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition, 28:781-793, 1995
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 18
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7:1-26, 1979
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 19
    • 84940772773 scopus 로고    scopus 로고
    • Diet-related chronic disease in the northeastern United States: A model-based clustering approach
    • A. Flynt and M. I. G. Daepp. Diet-related chronic disease in the northeastern United States: A model-based clustering approach. International Journal of Health Geographics, 14(1):1-14, 2015
    • (2015) International Journal of Health Geographics , vol.14 , Issue.1 , pp. 1-14
    • Flynt, A.1    Daepp, M.I.G.2
  • 20
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • C. Fraley. Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific Computing, 20(1):270-281, 1998
    • (1998) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 270-281
    • Fraley, C.1
  • 21
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fraley and A. E. Raftery. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41:578-588, 1998
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 22
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: Software for model-based cluster analysis
    • C. Fraley and A. E. Raftery. MCLUST: Software for model-based cluster analysis. Journal of Classification, 16(2):297-306, 1999
    • (1999) Journal of Classification , vol.16 , Issue.2 , pp. 297-306
    • Fraley, C.1    Raftery, A.E.2
  • 23
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458):611-631, 2002
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 24
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced model-based clustering, density estimation, and discriminant analysis software: Mclust
    • C. Fraley and A. E. Raftery. Enhanced model-based clustering, density estimation, and discriminant analysis software: Mclust. Journal of Classification, 20(2):263-286, 2003
    • (2003) Journal of Classification , vol.20 , Issue.2 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 25
    • 33846821265 scopus 로고    scopus 로고
    • Some applications of model-based clustering in chemistry
    • C. Fraley and A. E. Raftery. Some applications of model-based clustering in chemistry. R News, 6(3): 17-23, 2006a. URL http://CRAN.R-project.org/doc/Rnews/Rnews_2006-3.pdf
    • (2006) R News , vol.6 , Issue.3 , pp. 17-23
    • Fraley, C.1    Raftery, A.E.2
  • 26
    • 33846819744 scopus 로고    scopus 로고
    • Model-based microarray image analysis
    • C. Fraley and A. E. Raftery. Model-based microarray image analysis. R News, 6(5):60-63, 2006b. URL http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf
    • (2006) R News , vol.6 , Issue.5 , pp. 60-63
    • Fraley, C.1    Raftery, A.E.2
  • 27
    • 36849029089 scopus 로고    scopus 로고
    • Bayesian regularization for normal mixture estimation and model-based clustering
    • C. Fraley and A. E. Raftery. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24(2):155-181, 2007a
    • (2007) Journal of Classification , vol.24 , Issue.2 , pp. 155-181
    • Fraley, C.1    Raftery, A.E.2
  • 28
    • 33846820527 scopus 로고    scopus 로고
    • Model-based methods of classification: Using the mclust software in chemometrics
    • C. Fraley and A. E. Raftery. Model-based methods of classification: Using the mclust software in chemometrics. Journal of Statistical Software, 18(6):1-13, 2007b. URL http://www.jstatsoft.org/v018/i06/
    • (2007) Journal of Statistical Software , vol.18 , Issue.6 , pp. 1-13
    • Fraley, C.1    Raftery, A.E.2
  • 31
    • 34247868033 scopus 로고    scopus 로고
    • Fitting finite mixtures of generalized linear regressions in R
    • B. Grün and F. Leisch. Fitting finite mixtures of generalized linear regressions in R. Computational Statistics & Data Analysis, 51(11):5247-5252, 2007
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5247-5252
    • Grün, B.1    Leisch, F.2
  • 32
    • 54949126376 scopus 로고    scopus 로고
    • FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters
    • B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software, 28(4):1-35, 2008. URL http://www.jstatsoft. org/v28/i04/
    • (2008) Journal of Statistical Software , vol.28 , Issue.4 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 33
    • 0004325962 scopus 로고    scopus 로고
    • A stepwise discriminant analysis program using density estimation
    • Vienna: Physica-Verlag, 1974. COMPSTAT
    • J. D. F. Habbema, J. Hermans, and K. van den Broek. A stepwise discriminant analysis program using density estimation. In Proceedings in Computational Statistics, pages 101-110, Vienna: Physica-Verlag, 1974. COMPSTAT
    • Proceedings in Computational Statistics , pp. 101-110
    • Habbema, J.D.F.1    Hermans, J.2    van den Broek, K.3
  • 35
    • 11244342326 scopus 로고    scopus 로고
    • Asymmetric linear dimension reduction for classification
    • C. Hennig. Asymmetric linear dimension reduction for classification. Journal of Computational and Graphical Statistics, 13(4):930-945, 2004
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.4 , pp. 930-945
    • Hennig, C.1
  • 40
    • 85010320856 scopus 로고    scopus 로고
    • Model-based cluster analysis of democracies
    • J. Jang and D. B. Hitchcock. Model-based cluster analysis of democracies. Journal of Data Science, 10(2): 297-319, 2012
    • (2012) Journal of Data Science , vol.10 , Issue.2 , pp. 297-319
    • Jang, J.1    Hitchcock, D.B.2
  • 41
    • 84937759852 scopus 로고    scopus 로고
    • Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes
    • K. Kazor and A. S. Hering.-Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes. Journal of Agricultural, Biological and Environmental Statistics, 20:192-217, 2015
    • (2015) Journal of Agricultural, Biological and Environmental Statistics , vol.20 , pp. 192-217
    • Kazor, K.1    Hering, A.S.2
  • 43
    • 84906736623 scopus 로고    scopus 로고
    • Model-based clustering of hydrochemical data to demarcate natural versus human impacts on bedrock groundwater quality in rural areas, South Korea
    • K. H. Kim, S. T. Yun, S. S. Park, Y. Joo, and T. S. Kim. Model-based clustering of hydrochemical data to demarcate natural versus human impacts on bedrock groundwater quality in rural areas, South Korea. Journal of Hydrology, 519:626-636, 2014
    • (2014) Journal of Hydrology , vol.519 , pp. 626-636
    • Kim, K.H.1    Yun, S.T.2    Park, S.S.3    Joo, Y.4    Kim, T.S.5
  • 45
    • 0000512689 scopus 로고    scopus 로고
    • Generalised information criteria in model selection
    • S. Konishi and G. Kitagawa.-Generalised information criteria in model selection. Biometrika, 83(4): 875-890, 1996
    • (1996) Biometrika , vol.83 , Issue.4 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 46
    • 43249092859 scopus 로고    scopus 로고
    • Unsupervised classification methods in food sciences: Discussion and outlook
    • M. Kozak and C. H. Scaman. Unsupervised classification methods in food sciences: Discussion and outlook. Journal of the Science of Food and Agriculture, 88(7):1115-1127, 2008
    • (2008) Journal of the Science of Food and Agriculture , vol.88 , Issue.7 , pp. 1115-1127
    • Kozak, M.1    Scaman, C.H.2
  • 47
    • 84943630689 scopus 로고    scopus 로고
    • Rmixmod: The R package of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library
    • R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The R package of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library. Journal of Statistical Software, 67(6):1-29, 2015. URL http://www.jstatsoft.org/v067/i06/
    • (2015) Journal of Statistical Software , vol.67 , Issue.6 , pp. 1-29
    • Lebret, R.1    Iovleff, S.2    Langrognet, F.3    Biernacki, C.4    Celeux, G.5    Govaert, G.6
  • 48
    • 11244333649 scopus 로고    scopus 로고
    • FlexMix: A general framework for finite mixture models and latent class regression in R
    • F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8):1-18, 2004. URL http://www.jstatsoft.org/v11/i08/
    • (2004) Journal of Statistical Software , vol.11 , Issue.8 , pp. 1-18
    • Leisch, F.1
  • 49
    • 20844437272 scopus 로고    scopus 로고
    • Donuts, scratches and blanks: Robust model-based segmentation of microarray images
    • Q. Li, C. Fraley, R. E. Bumgarner, and A. E. Raftery. Donuts, scratches and blanks: Robust model-based segmentation of microarray images. Bioinformatics, 21:2875-2882, 2005
    • (2005) Bioinformatics , vol.21 , pp. 2875-2882
    • Li, Q.1    Fraley, C.2    Bumgarner, R.E.3    Raftery, A.E.4
  • 50
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4):570-577, 1995
    • (1995) Operations Research , vol.43 , Issue.4 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 52
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • G. J. McLachlan. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics, 36:318-324, 1987
    • (1987) Applied Statistics , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 56
  • 57
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz. Estimating the dimension of a model. The Annals of Statistics, 6:31-38, 1978
    • (1978) The Annals of Statistics , vol.6 , pp. 31-38
    • Schwartz, G.1
  • 58
    • 77956881791 scopus 로고    scopus 로고
    • Dimension reduction for model-based clustering
    • L. Scrucca. Dimension reduction for model-based clustering. Statistics and Computing, 20(4):471-484, 2010
    • (2010) Statistics and Computing , vol.20 , Issue.4 , pp. 471-484
    • Scrucca, L.1
  • 59
    • 84901592111 scopus 로고    scopus 로고
    • Graphical tools for model-based mixture discriminant analysis
    • L. Scrucca. Graphical tools for model-based mixture discriminant analysis. Advances in Data Analysis and Classification, 8(2):147-165, 2014
    • (2014) Advances in Data Analysis and Classification , vol.8 , Issue.2 , pp. 147-165
    • Scrucca, L.1
  • 60
    • 84948717719 scopus 로고    scopus 로고
    • Improved initialisation of model-based clustering using Gaussian hierarchical partitions
    • L. Scrucca and A. E. Raftery. Improved initialisation of model-based clustering using Gaussian hierarchical partitions. Advances in Data Analysis and Classification, 4(9):447-460, 2015
    • (2015) Advances in Data Analysis and Classification , vol.4 , Issue.9 , pp. 447-460
    • Scrucca, L.1    Raftery, A.E.2
  • 61
    • 84905407233 scopus 로고    scopus 로고
    • A model-based cluster analysis of social experiences in clinically anxious youth: links to emotional functioning
    • C. Suveg, M. L. Jacob, M. Whitehead, A. Jones, and J. N. Kingery. A model-based cluster analysis of social experiences in clinically anxious youth: links to emotional functioning. Anxiety, Stress, & Coping, 27(5):494-508, 2014
    • (2014) Anxiety, Stress, & Coping , vol.27 , Issue.5 , pp. 494-508
    • Suveg, C.1    Jacob, M.L.2    Whitehead, M.3    Jones, A.4    Kingery, J.N.5
  • 62
    • 48149109779 scopus 로고    scopus 로고
    • Cluster analysis applied to regional geochemical data-problems and possibilities
    • M. Templ, P. Filzmoser, and C. Reimann. Cluster analysis applied to regional geochemical data-problems and possibilities. Applied Geochemistry, 23:2198-2213, 2008
    • (2008) Applied Geochemistry , vol.23 , pp. 2198-2213
    • Templ, M.1    Filzmoser, P.2    Reimann, C.3
  • 63
    • 70350410103 scopus 로고    scopus 로고
    • An object-oriented framework for robust multivariate analysis
    • V. Todorov and P. Filzmoser. An object-oriented framework for robust multivariate analysis. Journal of Statistical Software, 32(3):1-47, 2009. URL http://www.jstatsoft.org/v32/i03/
    • (2009) Journal of Statistical Software , vol.32 , Issue.3 , pp. 1-47
    • Todorov, V.1    Filzmoser, P.2
  • 65
    • 79961226265 scopus 로고    scopus 로고
    • tourr: An R package for exploring multivariate data with projections
    • H. Wickham, D. Cook, H. Hofmann, and A. Buja. tourr: An R package for exploring multivariate data with projections. Journal of Statistical Software, 40(2):1-18, 2011. URL http://www.jstatsoft.org/v40/i02/
    • (2011) Journal of Statistical Software , vol.40 , Issue.2 , pp. 1-18
    • Wickham, H.1    Cook, D.2    Hofmann, H.3    Buja, A.4
  • 66
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • C. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1):95-103, 1983
    • (1983) The Annals of Statistics , vol.11 , Issue.1 , pp. 95-103
    • Wu, C.J.1
  • 67
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, Raftery, and W. L. Ruzzo. Model-based clustering and data transformations for gene expression data. Bioinformatics, 17(10):977-987, 2001
    • (2001) Bioinformatics , vol.17 , Issue.10 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Raftery5    Ruzzo, W.L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.