메뉴 건너뛰기




Volumn 84, Issue 17, 2018, Pages

An engineered Aro1 protein degradation approach for increased cis,cis-muconic acid biosynthesis in Saccharomyces cerevisiae

Author keywords

Adipic acid; Aro1; Degron tagging; Metabolic engineering; Muconic acid; Saccharomyces cerevisiae; Shikimate

Indexed keywords

AMINO ACIDS; BIOCHEMISTRY; BIOSYNTHESIS; DEHALOGENATION; ENZYME ACTIVITY; METABOLIC ENGINEERING; PLASTIC BOTTLES;

EID: 85052555327     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.01095-18     Document Type: Article
Times cited : (40)

References (41)
  • 1
    • 84900526615 scopus 로고    scopus 로고
    • Biotechnological production of muconic acid: current status and future prospects
    • Xie N-Z, Liang H, Huang R-B, Xu P. 2014. Biotechnological production of muconic acid: current status and future prospects. Biotechnol Adv 32: 615-622. https://doi.org/10.1016/j.biotechadv.2014.04.001
    • (2014) Biotechnol Adv , vol.32 , pp. 615-622
    • Xie, N.-Z.1    Liang, H.2    Huang, R.-B.3    Xu, P.4
  • 2
    • 85052555701 scopus 로고    scopus 로고
    • September 2010. Microorganisms for the production of adipic acid and other compounds
    • Burgard AP, Pharkya P, Osterhout RE. September 2010. Microorganisms for the production of adipic acid and other compounds. US patent 7799545B2
    • Burgard, A.P.1    Pharkya, P.2    Osterhout, R.E.3
  • 4
    • 85052564406 scopus 로고    scopus 로고
    • An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae
    • Brückner C, Oreb M, Kunze G, Boles E, Tripp J. 2018. An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res 18:foy017. https://doi.org/10.1093/femsyr/foy017
    • (2018) FEMS Yeast Res , vol.18
    • Brückner, C.1    Oreb, M.2    Kunze, G.3    Boles, E.4    Tripp, J.5
  • 5
    • 84931573824 scopus 로고    scopus 로고
    • An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose
    • DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. 2015. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11:465-471. https://doi.org/10.1038/ nchembio.1816
    • (2015) Nat Chem Biol , vol.11 , pp. 465-471
    • DeLoache, W.C.1    Russ, Z.N.2    Narcross, L.3    Gonzales, A.M.4    Martin, V.J.5    Dueber, J.E.6
  • 6
    • 84931041879 scopus 로고    scopus 로고
    • Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics
    • Gold ND, Gowen CM, Lussier F-X, Cautha SC, Mahadevan R, Martin VJ. 2015. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Fact 14:73. https://doi.org/10.1186/s12934-015-0252-2
    • (2015) Microb Cell Fact , vol.14 , pp. 73
    • Gold, N.D.1    Gowen, C.M.2    Lussier, F.-X.3    Cautha, S.C.4    Mahadevan, R.5    Martin, V.J.6
  • 8
    • 85027997650 scopus 로고    scopus 로고
    • Biosensorenabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae
    • Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. 2017. Biosensorenabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol J 12:1600687. https://doi.org/10.1002/biot.201600687
    • (2017) Biotechnol J , vol.12
    • Leavitt, J.M.1    Wagner, J.M.2    Tu, C.C.3    Tong, A.4    Liu, Y.5    Alper, H.S.6
  • 9
    • 84986254065 scopus 로고    scopus 로고
    • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
    • Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. 2015. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181-188. https://doi.org/10.1016/j.ymben.2015.08.003
    • (2015) Metab Eng , vol.31 , pp. 181-188
    • Rodriguez, A.1    Kildegaard, K.R.2    Li, M.3    Borodina, I.4    Nielsen, J.5
  • 10
    • 78149408612 scopus 로고    scopus 로고
    • Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate: coenzyme A ligase and stilbene synthase genes
    • Shin S-Y, Han NS, Park Y-C, Kim M-D, Seo J-H. 2011. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate: coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol 48:48-53. https://doi.org/10.1016/j.enzmictec.2010.09.004
    • (2011) Enzyme Microb Technol , vol.48 , pp. 48-53
    • Shin, S.-Y.1    Han, N.S.2    Park, Y.-C.3    Kim, M.-D.4    Seo, J.-H.5
  • 11
    • 0036010273 scopus 로고    scopus 로고
    • Benzene-free synthesis of adipic acid
    • Niu W, Draths K, Frost J. 2002. Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201-211. https://doi.org/10.1021/bp010179x
    • (2002) Biotechnol Prog , vol.18 , pp. 201-211
    • Niu, W.1    Draths, K.2    Frost, J.3
  • 12
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
    • Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E. 2012. Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78:8421-8430. https://doi.org/10.1128/AEM.01983-12
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8421-8430
    • Weber, C.1    Brückner, C.2    Weinreb, S.3    Lehr, C.4    Essl, C.5    Boles, E.6
  • 13
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55-66. https://doi.org/10.1016/j.ymben.2012.10.003
    • (2013) Metab Eng , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 16
    • 85021308127 scopus 로고    scopus 로고
    • Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors
    • Suástegui M, Ng CY, Chowdhury A, Sun W, Cao M, House E, Maranas CD, Shao Z. 2017. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng 42:134-144. https://doi.org/10.1016/j.ymben.2017.06.008
    • (2017) Metab Eng , vol.42 , pp. 134-144
    • Suástegui, M.1    Ng, C.Y.2    Chowdhury, A.3    Sun, W.4    Cao, M.5    House, E.6    Maranas, C.D.7    Shao, Z.8
  • 18
    • 84919787681 scopus 로고    scopus 로고
    • Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
    • McKenna R, Thompson B, Pugh S, Nielsen DR. 2014. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13:123. https://doi.org/10.1186/s12934-014-0123-2
    • (2014) Microb Cell Fact , vol.13 , pp. 123
    • McKenna, R.1    Thompson, B.2    Pugh, S.3    Nielsen, D.R.4
  • 19
    • 44749095048 scopus 로고    scopus 로고
    • Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact
    • Luttik M, Vuralhan Z, Suir E, Braus G, Pronk J, Daran J. 2008. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10:141-153. https://doi.org/10.1016/j.ymben.2008.02.002
    • (2008) Metab Eng , vol.10 , pp. 141-153
    • Luttik, M.1    Vuralhan, Z.2    Suir, E.3    Braus, G.4    Pronk, J.5    Daran, J.6
  • 20
    • 0023414737 scopus 로고
    • The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains
    • Duncan K, Edwards R, Coggins J. 1987. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem J 246:375-386. https://doi.org/10.1042/bj2460375
    • (1987) Biochem J , vol.246 , pp. 375-386
    • Duncan, K.1    Edwards, R.2    Coggins, J.3
  • 21
    • 0033752944 scopus 로고    scopus 로고
    • Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry
    • Mateus C, Avery SV. 2000. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16:1313-1323. https://doi.org/10.1002/1097-0061(200010)16:14 <1313::AID-YEA626>3.0.CO;2-O
    • (2000) Yeast , vol.16 , pp. 1313-1323
    • Mateus, C.1    Avery, S.V.2
  • 22
    • 0028171039 scopus 로고
    • G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover
    • Salama SR, Hendricks KB, Thorner J. 1994. G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol Cell Biol 14:7953-7966. https://doi.org/10.1128/MCB.14.12.7953
    • (1994) Mol Cell Biol , vol.14 , pp. 7953-7966
    • Salama, S.R.1    Hendricks, K.B.2    Thorner, J.3
  • 23
    • 0036272369 scopus 로고    scopus 로고
    • Transferable domain in the G1 cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCFCdc4 to SCFGrr1
    • Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. 2002. Transferable domain in the G1 cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCFCdc4 to SCFGrr1. Mol Cell Biol 22:4463-4476. https://doi.org/10.1128/MCB.22.13.4463-4476.2002
    • (2002) Mol Cell Biol , vol.22 , pp. 4463-4476
    • Berset, C.1    Griac, P.2    Tempel, R.3    La Rue, J.4    Wittenberg, C.5    Lanker, S.6
  • 24
    • 85018280073 scopus 로고    scopus 로고
    • Requirement of a functional flavin mononucleotide prenyltransferase for the activity of a bacterial decarboxylase in a heterologous muconic acid pathway in Saccharomyces cerevisiae
    • Weber HE, Gottardi M, Brückner C, Oreb M, Boles E, Tripp J. 2017. Requirement of a functional flavin mononucleotide prenyltransferase for the activity of a bacterial decarboxylase in a heterologous muconic acid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 83:e03472-16. https://doi.org/10.1128/AEM.03472-16
    • (2017) Appl Environ Microbiol , vol.83
    • Weber, H.E.1    Gottardi, M.2    Brückner, C.3    Oreb, M.4    Boles, E.5    Tripp, J.6
  • 25
    • 0029786406 scopus 로고    scopus 로고
    • Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation
    • Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L. 1996. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187-3195
    • (1996) Appl Environ Microbiol , vol.62 , pp. 3187-3195
    • Albers, E.1    Larsson, C.2    Lidén, G.3    Niklasson, C.4    Gustafsson, L.5
  • 26
    • 85043766754 scopus 로고    scopus 로고
    • Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae
    • Peng B, Nielsen LK, Kampranis SC, Vickers CE. 2018. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metab Eng 47:83-93. https://doi.org/10.1016/j.ymben.2018.02.005
    • (2018) Metab Eng , vol.47 , pp. 83-93
    • Peng, B.1    Nielsen, L.K.2    Kampranis, S.C.3    Vickers, C.E.4
  • 27
    • 84928166783 scopus 로고    scopus 로고
    • Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase
    • Lin F, Ferguson KL, Boyer DR, Lin XN, Marsh ENG. 2015. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase. ACS Chem Biol 10:1137-1144. https://doi.org/10.1021/ cb5008103
    • (2015) ACS Chem Biol , vol.10 , pp. 1137-1144
    • Lin, F.1    Ferguson, K.L.2    Boyer, D.R.3    Lin, X.N.4    Marsh, E.N.G.5
  • 28
    • 85041481070 scopus 로고    scopus 로고
    • Kinetic characterization of prenylflavin synthase from Saccharomyces cerevisiae
    • Arunrattanamook N, Marsh ENG. 2018. Kinetic characterization of prenylflavin synthase from Saccharomyces cerevisiae. Biochemistry 57:696-700. https://doi.org/10.1021/acs.biochem.7b01131
    • (2018) Biochemistry , vol.57 , pp. 696-700
    • Arunrattanamook, N.1    Marsh, E.N.G.2
  • 30
    • 84942279091 scopus 로고    scopus 로고
    • Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production
    • Strucko T, Magdenoska O, Mortensen UH. 2015. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metab Eng Commun 2:99-108. https:// doi.org/10.1016/j.meteno.2015.09.001
    • (2015) Metab Eng Commun , vol.2 , pp. 99-108
    • Strucko, T.1    Magdenoska, O.2    Mortensen, U.H.3
  • 31
    • 84941962714 scopus 로고    scopus 로고
    • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    • Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J. 2015. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1-11. https://doi.org/10.1016/j.ymben.2015.08.007
    • (2015) Metab Eng , vol.32 , pp. 1-11
    • Li, M.1    Kildegaard, K.R.2    Chen, Y.3    Rodriguez, A.4    Borodina, I.5    Nielsen, J.6
  • 32
    • 0024202927 scopus 로고
    • The Saccharomyces cerevisiae ARO1 gene: an example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway
    • Duncan K, Edwards RM, Coggins JR. 1988. The Saccharomyces cerevisiae ARO1 gene: an example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway. FEBS Lett 241:83-88. https://doi.org/10.1016/0014-5793(88)81036-6
    • (1988) FEBS Lett , vol.241 , pp. 83-88
    • Duncan, K.1    Edwards, R.M.2    Coggins, J.R.3
  • 33
    • 0034973590 scopus 로고    scopus 로고
    • Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast
    • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347-4368. https://doi.org/10.1128/MCB.21.13.4347-4368.2001
    • (2001) Mol Cell Biol , vol.21 , pp. 4347-4368
    • Natarajan, K.1    Meyer, M.R.2    Jackson, B.M.3    Slade, D.4    Roberts, C.5    Hinnebusch, A.G.6    Marton, M.J.7
  • 34
  • 36
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31-34. https://doi.org/10.1038/nprot.2007.13
    • (2007) Nat Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 37
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519-2524. https://doi.org/10.1093/nar/24.13.2519
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fiedler, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 38
    • 0036275447 scopus 로고    scopus 로고
    • Getting started with yeast
    • Sherman F. 2002. Getting started with yeast. Methods Enzymol 350: 3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
    • (2002) Methods Enzymol , vol.350 , pp. 3-41
    • Sherman, F.1
  • 40
    • 84857995434 scopus 로고    scopus 로고
    • Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform
    • Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA. 2012. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14:104-111. https://doi.org/10.1016/j.ymben.2012.01.006
    • (2012) Metab Eng , vol.14 , pp. 104-111
    • Mikkelsen, M.D.1    Buron, L.D.2    Salomonsen, B.3    Olsen, C.E.4    Hansen, B.G.5    Mortensen, U.H.6    Halkier, B.A.7
  • 41
    • 70449686525 scopus 로고    scopus 로고
    • Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
    • Flagfeldt DB, Siewers V, Huang L, Nielsen J. 2009. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26:545-551. https://doi.org/10.1002/yea.1705
    • (2009) Yeast , vol.26 , pp. 545-551
    • Flagfeldt, D.B.1    Siewers, V.2    Huang, L.3    Nielsen, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.