-
1
-
-
84900526615
-
Biotechnological production of muconic acid: current status and future prospects
-
Xie N-Z, Liang H, Huang R-B, Xu P. 2014. Biotechnological production of muconic acid: current status and future prospects. Biotechnol Adv 32: 615-622. https://doi.org/10.1016/j.biotechadv.2014.04.001
-
(2014)
Biotechnol Adv
, vol.32
, pp. 615-622
-
-
Xie, N.-Z.1
Liang, H.2
Huang, R.-B.3
Xu, P.4
-
2
-
-
85052555701
-
-
September 2010. Microorganisms for the production of adipic acid and other compounds
-
Burgard AP, Pharkya P, Osterhout RE. September 2010. Microorganisms for the production of adipic acid and other compounds. US patent 7799545B2
-
-
-
Burgard, A.P.1
Pharkya, P.2
Osterhout, R.E.3
-
3
-
-
78049460641
-
Improved vanillin production in baker's yeast through in silico design
-
Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. 2010. Improved vanillin production in baker's yeast through in silico design. Microb Cell Fact 9:84. https://doi.org/10.1186/1475-2859-9-84
-
(2010)
Microb Cell Fact
, vol.9
, pp. 84
-
-
Brochado, A.R.1
Matos, C.2
Møller, B.L.3
Hansen, J.4
Mortensen, U.H.5
Patil, K.R.6
-
4
-
-
85052564406
-
An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae
-
Brückner C, Oreb M, Kunze G, Boles E, Tripp J. 2018. An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res 18:foy017. https://doi.org/10.1093/femsyr/foy017
-
(2018)
FEMS Yeast Res
, vol.18
-
-
Brückner, C.1
Oreb, M.2
Kunze, G.3
Boles, E.4
Tripp, J.5
-
5
-
-
84931573824
-
An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose
-
DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. 2015. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11:465-471. https://doi.org/10.1038/ nchembio.1816
-
(2015)
Nat Chem Biol
, vol.11
, pp. 465-471
-
-
DeLoache, W.C.1
Russ, Z.N.2
Narcross, L.3
Gonzales, A.M.4
Martin, V.J.5
Dueber, J.E.6
-
6
-
-
84931041879
-
Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics
-
Gold ND, Gowen CM, Lussier F-X, Cautha SC, Mahadevan R, Martin VJ. 2015. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Fact 14:73. https://doi.org/10.1186/s12934-015-0252-2
-
(2015)
Microb Cell Fact
, vol.14
, pp. 73
-
-
Gold, N.D.1
Gowen, C.M.2
Lussier, F.-X.3
Cautha, S.C.4
Mahadevan, R.5
Martin, V.J.6
-
7
-
-
84870540105
-
De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae
-
Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran J-M. 2012. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact 11:155. https://doi.org/10.1186/1475-2859-11-155
-
(2012)
Microb Cell Fact
, vol.11
, pp. 155
-
-
Koopman, F.1
Beekwilder, J.2
Crimi, B.3
van Houwelingen, A.4
Hall, R.D.5
Bosch, D.6
van Maris, A.J.7
Pronk, J.T.8
Daran, J.-M.9
-
8
-
-
85027997650
-
Biosensorenabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae
-
Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. 2017. Biosensorenabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol J 12:1600687. https://doi.org/10.1002/biot.201600687
-
(2017)
Biotechnol J
, vol.12
-
-
Leavitt, J.M.1
Wagner, J.M.2
Tu, C.C.3
Tong, A.4
Liu, Y.5
Alper, H.S.6
-
9
-
-
84986254065
-
Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
-
Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. 2015. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181-188. https://doi.org/10.1016/j.ymben.2015.08.003
-
(2015)
Metab Eng
, vol.31
, pp. 181-188
-
-
Rodriguez, A.1
Kildegaard, K.R.2
Li, M.3
Borodina, I.4
Nielsen, J.5
-
10
-
-
78149408612
-
Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate: coenzyme A ligase and stilbene synthase genes
-
Shin S-Y, Han NS, Park Y-C, Kim M-D, Seo J-H. 2011. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate: coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol 48:48-53. https://doi.org/10.1016/j.enzmictec.2010.09.004
-
(2011)
Enzyme Microb Technol
, vol.48
, pp. 48-53
-
-
Shin, S.-Y.1
Han, N.S.2
Park, Y.-C.3
Kim, M.-D.4
Seo, J.-H.5
-
11
-
-
0036010273
-
Benzene-free synthesis of adipic acid
-
Niu W, Draths K, Frost J. 2002. Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201-211. https://doi.org/10.1021/bp010179x
-
(2002)
Biotechnol Prog
, vol.18
, pp. 201-211
-
-
Niu, W.1
Draths, K.2
Frost, J.3
-
12
-
-
84870834865
-
Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
-
Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E. 2012. Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78:8421-8430. https://doi.org/10.1128/AEM.01983-12
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8421-8430
-
-
Weber, C.1
Brückner, C.2
Weinreb, S.3
Lehr, C.4
Essl, C.5
Boles, E.6
-
13
-
-
84875265625
-
Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
-
Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55-66. https://doi.org/10.1016/j.ymben.2012.10.003
-
(2013)
Metab Eng
, vol.15
, pp. 55-66
-
-
Curran, K.A.1
Leavitt, J.M.2
Karim, A.S.3
Alper, H.S.4
-
14
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS. 2015. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst 1:88-96. https://doi.org/10.1016/j.cels.2015.02.001
-
(2015)
Cell Syst
, vol.1
, pp. 88-96
-
-
Horwitz, A.A.1
Walter, J.M.2
Schubert, M.G.3
Kung, S.H.4
Hawkins, K.5
Platt, D.M.6
Hernday, A.D.7
Mahatdejkul-Meadows, T.8
Szeto, W.9
Chandran, S.S.10
-
15
-
-
85045836019
-
An orthogonal and pH-tunable sensorselector for muconic acid biosynthesis in yeast
-
Snoek T, Romero-Suarez D, Zhang J, Ambri F, Skjoedt ML, Sudarsan S, Jensen MK, Keasling JD. 2018. An orthogonal and pH-tunable sensorselector for muconic acid biosynthesis in yeast. ACS Synth Biol 7:995-1003. https://doi.org/10.1021/acssynbio.7b00439
-
(2018)
ACS Synth Biol
, vol.7
, pp. 995-1003
-
-
Snoek, T.1
Romero-Suarez, D.2
Zhang, J.3
Ambri, F.4
Skjoedt, M.L.5
Sudarsan, S.6
Jensen, M.K.7
Keasling, J.D.8
-
16
-
-
85021308127
-
Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors
-
Suástegui M, Ng CY, Chowdhury A, Sun W, Cao M, House E, Maranas CD, Shao Z. 2017. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng 42:134-144. https://doi.org/10.1016/j.ymben.2017.06.008
-
(2017)
Metab Eng
, vol.42
, pp. 134-144
-
-
Suástegui, M.1
Ng, C.Y.2
Chowdhury, A.3
Sun, W.4
Cao, M.5
House, E.6
Maranas, C.D.7
Shao, Z.8
-
17
-
-
84922803616
-
(R, S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli
-
Nakagawa A, Matsuzaki C, Matsumura E, Koyanagi T, Katayama T, Yamamoto K, Sato F, Kumagai H, Minami H. 2014. (R, S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep 4:6695. https://doi.org/10.1038/srep06695
-
(2014)
Sci Rep
, vol.4
, pp. 6695
-
-
Nakagawa, A.1
Matsuzaki, C.2
Matsumura, E.3
Koyanagi, T.4
Katayama, T.5
Yamamoto, K.6
Sato, F.7
Kumagai, H.8
Minami, H.9
-
18
-
-
84919787681
-
Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
-
McKenna R, Thompson B, Pugh S, Nielsen DR. 2014. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13:123. https://doi.org/10.1186/s12934-014-0123-2
-
(2014)
Microb Cell Fact
, vol.13
, pp. 123
-
-
McKenna, R.1
Thompson, B.2
Pugh, S.3
Nielsen, D.R.4
-
19
-
-
44749095048
-
Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact
-
Luttik M, Vuralhan Z, Suir E, Braus G, Pronk J, Daran J. 2008. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10:141-153. https://doi.org/10.1016/j.ymben.2008.02.002
-
(2008)
Metab Eng
, vol.10
, pp. 141-153
-
-
Luttik, M.1
Vuralhan, Z.2
Suir, E.3
Braus, G.4
Pronk, J.5
Daran, J.6
-
20
-
-
0023414737
-
The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains
-
Duncan K, Edwards R, Coggins J. 1987. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem J 246:375-386. https://doi.org/10.1042/bj2460375
-
(1987)
Biochem J
, vol.246
, pp. 375-386
-
-
Duncan, K.1
Edwards, R.2
Coggins, J.3
-
21
-
-
0033752944
-
Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry
-
Mateus C, Avery SV. 2000. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16:1313-1323. https://doi.org/10.1002/1097-0061(200010)16:14 <1313::AID-YEA626>3.0.CO;2-O
-
(2000)
Yeast
, vol.16
, pp. 1313-1323
-
-
Mateus, C.1
Avery, S.V.2
-
22
-
-
0028171039
-
G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover
-
Salama SR, Hendricks KB, Thorner J. 1994. G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol Cell Biol 14:7953-7966. https://doi.org/10.1128/MCB.14.12.7953
-
(1994)
Mol Cell Biol
, vol.14
, pp. 7953-7966
-
-
Salama, S.R.1
Hendricks, K.B.2
Thorner, J.3
-
23
-
-
0036272369
-
Transferable domain in the G1 cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCFCdc4 to SCFGrr1
-
Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. 2002. Transferable domain in the G1 cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCFCdc4 to SCFGrr1. Mol Cell Biol 22:4463-4476. https://doi.org/10.1128/MCB.22.13.4463-4476.2002
-
(2002)
Mol Cell Biol
, vol.22
, pp. 4463-4476
-
-
Berset, C.1
Griac, P.2
Tempel, R.3
La Rue, J.4
Wittenberg, C.5
Lanker, S.6
-
24
-
-
85018280073
-
Requirement of a functional flavin mononucleotide prenyltransferase for the activity of a bacterial decarboxylase in a heterologous muconic acid pathway in Saccharomyces cerevisiae
-
Weber HE, Gottardi M, Brückner C, Oreb M, Boles E, Tripp J. 2017. Requirement of a functional flavin mononucleotide prenyltransferase for the activity of a bacterial decarboxylase in a heterologous muconic acid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 83:e03472-16. https://doi.org/10.1128/AEM.03472-16
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Weber, H.E.1
Gottardi, M.2
Brückner, C.3
Oreb, M.4
Boles, E.5
Tripp, J.6
-
25
-
-
0029786406
-
Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation
-
Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L. 1996. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187-3195
-
(1996)
Appl Environ Microbiol
, vol.62
, pp. 3187-3195
-
-
Albers, E.1
Larsson, C.2
Lidén, G.3
Niklasson, C.4
Gustafsson, L.5
-
26
-
-
85043766754
-
Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae
-
Peng B, Nielsen LK, Kampranis SC, Vickers CE. 2018. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metab Eng 47:83-93. https://doi.org/10.1016/j.ymben.2018.02.005
-
(2018)
Metab Eng
, vol.47
, pp. 83-93
-
-
Peng, B.1
Nielsen, L.K.2
Kampranis, S.C.3
Vickers, C.E.4
-
27
-
-
84928166783
-
Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase
-
Lin F, Ferguson KL, Boyer DR, Lin XN, Marsh ENG. 2015. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase. ACS Chem Biol 10:1137-1144. https://doi.org/10.1021/ cb5008103
-
(2015)
ACS Chem Biol
, vol.10
, pp. 1137-1144
-
-
Lin, F.1
Ferguson, K.L.2
Boyer, D.R.3
Lin, X.N.4
Marsh, E.N.G.5
-
28
-
-
85041481070
-
Kinetic characterization of prenylflavin synthase from Saccharomyces cerevisiae
-
Arunrattanamook N, Marsh ENG. 2018. Kinetic characterization of prenylflavin synthase from Saccharomyces cerevisiae. Biochemistry 57:696-700. https://doi.org/10.1021/acs.biochem.7b01131
-
(2018)
Biochemistry
, vol.57
, pp. 696-700
-
-
Arunrattanamook, N.1
Marsh, E.N.G.2
-
29
-
-
85045909652
-
Biosynthesis and activity of prenylated FMN cofactors
-
Wang P-H, Khusnutdinova AN, Luo F, Xiao J, Nemr K, Flick R, Brown G, Mahadevan R, Edwards EA, Yakunin AF. 2018. Biosynthesis and activity of prenylated FMN cofactors. Cell Chem Biol 25:560-570. https://doi.org/ 10.1016/j.chembiol.2018.02.007
-
(2018)
Cell Chem Biol
, vol.25
, pp. 560-570
-
-
Wang, P.-H.1
Khusnutdinova, A.N.2
Luo, F.3
Xiao, J.4
Nemr, K.5
Flick, R.6
Brown, G.7
Mahadevan, R.8
Edwards, E.A.9
Yakunin, A.F.10
-
30
-
-
84942279091
-
Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production
-
Strucko T, Magdenoska O, Mortensen UH. 2015. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metab Eng Commun 2:99-108. https:// doi.org/10.1016/j.meteno.2015.09.001
-
(2015)
Metab Eng Commun
, vol.2
, pp. 99-108
-
-
Strucko, T.1
Magdenoska, O.2
Mortensen, U.H.3
-
31
-
-
84941962714
-
De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
-
Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J. 2015. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1-11. https://doi.org/10.1016/j.ymben.2015.08.007
-
(2015)
Metab Eng
, vol.32
, pp. 1-11
-
-
Li, M.1
Kildegaard, K.R.2
Chen, Y.3
Rodriguez, A.4
Borodina, I.5
Nielsen, J.6
-
32
-
-
0024202927
-
The Saccharomyces cerevisiae ARO1 gene: an example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway
-
Duncan K, Edwards RM, Coggins JR. 1988. The Saccharomyces cerevisiae ARO1 gene: an example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway. FEBS Lett 241:83-88. https://doi.org/10.1016/0014-5793(88)81036-6
-
(1988)
FEBS Lett
, vol.241
, pp. 83-88
-
-
Duncan, K.1
Edwards, R.M.2
Coggins, J.R.3
-
33
-
-
0034973590
-
Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast
-
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347-4368. https://doi.org/10.1128/MCB.21.13.4347-4368.2001
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4347-4368
-
-
Natarajan, K.1
Meyer, M.R.2
Jackson, B.M.3
Slade, D.4
Roberts, C.5
Hinnebusch, A.G.6
Marton, M.J.7
-
34
-
-
12344282919
-
Drag&Drop cloning in yeast
-
Jansen G, Wu C, Schade B, Thomas DY, Whiteway M. 2005. Drag&Drop cloning in yeast. Gene 344:43-51. https://doi.org/10.1016/j.gene.2004.10.016
-
(2005)
Gene
, vol.344
, pp. 43-51
-
-
Jansen, G.1
Wu, C.2
Schade, B.3
Thomas, D.Y.4
Whiteway, M.5
-
35
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, III, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343-345. https://doi.org/10.1038/nmeth.1318
-
(2009)
Nat Methods
, vol.6
, pp. 343-345
-
-
Gibson, D.G.1
Young, L.2
Chuang, R.-Y.3
Venter, J.C.4
Hutchison, I.I.I.C.A.5
Smith, H.O.6
-
36
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31-34. https://doi.org/10.1038/nprot.2007.13
-
(2007)
Nat Protoc
, vol.2
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
37
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519-2524. https://doi.org/10.1093/nar/24.13.2519
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 2519-2524
-
-
Güldener, U.1
Heck, S.2
Fiedler, T.3
Beinhauer, J.4
Hegemann, J.H.5
-
38
-
-
0036275447
-
Getting started with yeast
-
Sherman F. 2002. Getting started with yeast. Methods Enzymol 350: 3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
-
(2002)
Methods Enzymol
, vol.350
, pp. 3-41
-
-
Sherman, F.1
-
39
-
-
84911871184
-
Selection of chromosomal DNA libraries using a multiplex CRISPR system
-
Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP. 2014. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife 3:e03703. https://doi.org/ 10.7554/eLife.03703
-
(2014)
Elife
, vol.3
-
-
Ryan, O.W.1
Skerker, J.M.2
Maurer, M.J.3
Li, X.4
Tsai, J.C.5
Poddar, S.6
Lee, M.E.7
DeLoache, W.8
Dueber, J.E.9
Arkin, A.P.10
-
40
-
-
84857995434
-
Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform
-
Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA. 2012. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14:104-111. https://doi.org/10.1016/j.ymben.2012.01.006
-
(2012)
Metab Eng
, vol.14
, pp. 104-111
-
-
Mikkelsen, M.D.1
Buron, L.D.2
Salomonsen, B.3
Olsen, C.E.4
Hansen, B.G.5
Mortensen, U.H.6
Halkier, B.A.7
-
41
-
-
70449686525
-
Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
-
Flagfeldt DB, Siewers V, Huang L, Nielsen J. 2009. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26:545-551. https://doi.org/10.1002/yea.1705
-
(2009)
Yeast
, vol.26
, pp. 545-551
-
-
Flagfeldt, D.B.1
Siewers, V.2
Huang, L.3
Nielsen, J.4
|