메뉴 건너뛰기




Volumn 23, Issue 6, 2016, Pages 1166-1173

Learning statistical models of phenotypes using noisy labeled training data

Author keywords

Electronic health record; High throughput; Machine learning; Noisy labels; Phenotyping

Indexed keywords

ACCURACY; ARTICLE; CHRONIC DISEASE; DATA ANALYSIS; ELECTRONIC HEALTH RECORD; FEASIBILITY STUDY; GOLD STANDARD; HEART INFARCTION; HUMAN; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; NON INSULIN DEPENDENT DIABETES MELLITUS; PHENOTYPE; STATISTICAL MODEL; ALGORITHM; CONTROLLED VOCABULARY; MEDICAL INFORMATICS;

EID: 84994689614     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw028     Document Type: Article
Times cited : (135)

References (48)
  • 1
    • 84905988439 scopus 로고    scopus 로고
    • A 'green button' for using aggregate patient data at the point of care
    • Longhurst CA, Harrington RA, and Shah NH. A 'green button' for using aggregate patient data at the point of care. Health Aff (Millwood). 2014;33(7):1229-1235.
    • (2014) Health Aff (Millwood) , vol.33 , Issue.7 , pp. 1229-1235
    • Longhurst, C.A.1    Harrington, R.A.2    Shah, N.H.3
  • 2
    • 84890479944 scopus 로고    scopus 로고
    • Electronic health records-driven phenotyping: challenges, recent advances, and perspectives
    • Pathak J, Kho AN, and Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc. 2013;20(e2):e206-e211.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E2 , pp. e206-e211
    • Pathak, J.1    Kho, A.N.2    Denny, J.C.3
  • 3
    • 84890087368 scopus 로고    scopus 로고
    • Mining the ultimate phenome repository
    • Shah NH. Mining the ultimate phenome repository. Nat Biotechnol. 2013;31(12):1095-1097.
    • (2013) Nat Biotechnol , vol.31 , Issue.12 , pp. 1095-1097
    • Shah, N.H.1
  • 5
    • 84880059657 scopus 로고    scopus 로고
    • The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future
    • Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. GenetMed. 2013;15(10):761-771.
    • (2013) GenetMed , vol.15 , Issue.10 , pp. 761-771
    • Gottesman, O.1    Kuivaniemi, H.2    Tromp, G.3    Faucett, W.A.4    Li, R.5    Manolio, T.A.6
  • 6
    • 79251581866 scopus 로고    scopus 로고
    • The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies
    • McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2011;4:13.
    • (2011) BMC Med Genomics , vol.4 , pp. 13
    • McCarty, C.A.1    Chisholm, R.L.2    Chute, C.G.3    Kullo, I.J.4    Jarvik, G.P.5    Larson, E.B.6
  • 7
    • 84928601920 scopus 로고    scopus 로고
    • Extracting research-quality phenotypes from electronic health records to support precision medicine
    • Wei WQ and Denny JC. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med. 2015;7(1):41.
    • (2015) Genome Med , vol.7 , Issue.1 , pp. 41
    • Wei, W.Q.1    Denny, J.C.2
  • 8
    • 84890107642 scopus 로고    scopus 로고
    • Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data
    • Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31(12):1102-1110.
    • (2013) Nat Biotechnol , vol.31 , Issue.12 , pp. 1102-1110
    • Denny, J.C.1    Bastarache, L.2    Ritchie, M.D.3    Carroll, R.J.4    Zink, R.5    Mosley, J.D.6
  • 9
    • 84923326346 scopus 로고    scopus 로고
    • Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis
    • Carroll RJ, Eyler AE, and Denny JC. Intelligent use and clinical benefits of electronic health records in rheumatoid arthritis. Expert Rev Clin Immunol. 2015;11(3):329-337.
    • (2015) Expert Rev Clin Immunol , vol.11 , Issue.3 , pp. 329-337
    • Carroll, R.J.1    Eyler, A.E.2    Denny, J.C.3
  • 10
    • 84908666048 scopus 로고    scopus 로고
    • Electronicmedical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci
    • Ritchie MD, Verma SS, Hall MA, Goodloe RJ, Berg RL, Carrell DS, et al. Electronicmedical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Mol Vis. 2014;20:1281-1295.
    • (2014) Mol Vis , vol.20 , pp. 1281-1295
    • Ritchie, M.D.1    Verma, S.S.2    Hall, M.A.3    Goodloe, R.J.4    Berg, R.L.5    Carrell, D.S.6
  • 12
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc. 2011; 18(5):601-606.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3    Rosenbloom, S.T.4    Mani, S.5    Denny, J.C.6
  • 13
    • 81055126769 scopus 로고    scopus 로고
    • A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record
    • Wright A, Pang J, Feblowitz JC, Maloney FL, Wilcox AR, Ramelson HZ, et al. A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record. J Am Med Inform Assoc. 2011;18(6):859-867.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.6 , pp. 859-867
    • Wright, A.1    Pang, J.2    Feblowitz, J.C.3    Maloney, F.L.4    Wilcox, A.R.5    Ramelson, H.Z.6
  • 14
    • 84881328205 scopus 로고    scopus 로고
    • Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
    • Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 2013;20(e1):e147-e154.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E1 , pp. e147-e154
    • Newton, K.M.1    Peissig, P.L.2    Kho, A.N.3    Bielinski, S.J.4    Berg, R.L.5    Choudhary, V.6
  • 15
    • 84890538875 scopus 로고    scopus 로고
    • A collaborative approach to developing an electronic health record phenotyping algorithm for drug-induced liver injury
    • Overby CL, Pathak J, Gottesman O, Haerian K, Perotte A, Murphy S, et al. A collaborative approach to developing an electronic health record phenotyping algorithm for drug-induced liver injury. J Am Med Inform Assoc. 2013;20(e2):e243-e252.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E2 , pp. e243-e252
    • Overby, C.L.1    Pathak, J.2    Gottesman, O.3    Haerian, K.4    Perotte, A.5    Murphy, S.6
  • 16
    • 84879890776 scopus 로고    scopus 로고
    • Challenges in using electronic health record data for CER: experience of 4 learning organizations and solutions applied
    • Bayley KB, Belnap T, Savitz L, Masica AL, Shah N, and Fleming NS. Challenges in using electronic health record data for CER: experience of 4 learning organizations and solutions applied. Med Care. 2013;51(8 Suppl 3):S80-S86.
    • (2013) Med Care , vol.51 , Issue.8 , pp. S80-S86
    • Bayley, K.B.1    Belnap, T.2    Savitz, L.3    Masica, A.L.4    Shah, N.5    Fleming, N.S.6
  • 17
    • 78751680763 scopus 로고    scopus 로고
    • Hospitals scramble to meet deadlines for adopting electronic health records: pharmacy systems will be updated slowly but surely
    • Barlas S. Hospitals scramble to meet deadlines for adopting electronic health records: pharmacy systems will be updated slowly but surely. P T. 2011;36(1):37-40.
    • (2011) P T , vol.36 , Issue.1 , pp. 37-40
    • Barlas, S.1
  • 18
    • 84994724769 scopus 로고    scopus 로고
    • Accessed 12 February 2015
    • PheKB. Phenotype KnowledgeBase. Available from: http://www.phekb.org. Accessed 12 February 2015.
    • Phenotype KnowledgeBase
    • Phe, K.B.1
  • 20
    • 84895879370 scopus 로고    scopus 로고
    • Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence
    • Carrell DS, Halgrim S, Tran DT, Buist DS, Chubak J, Chapman WWet al. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence. Am J Epidemiol. 2014;179(6):749-758.
    • (2014) Am J Epidemiol , vol.179 , Issue.6 , pp. 749-758
    • Carrell, D.S.1    Halgrim, S.2    Tran, D.T.3    Buist, D.S.4    Chubak, J.5    Chapman, W.W.6
  • 21
  • 22
    • 84890536260 scopus 로고    scopus 로고
    • Defining a comprehensive verotype using electronic health records for personalized medicine
    • Boland MR, Hripcsak G, Shen Y, Chung WK, and Weng C. Defining a comprehensive verotype using electronic health records for personalized medicine. J Am Med Inform Assoc. 2013;20(e2):e232-e238.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E2 , pp. e232-e238
    • Boland, M.R.1    Hripcsak, G.2    Shen, Y.3    Chung, W.K.4    Weng, C.5
  • 23
    • 84890318231 scopus 로고    scopus 로고
    • Using electronic health records data to identify patients with chronic pain in a primary care setting
    • Tian TY, Zlateva I, and Anderson DR. Using electronic health records data to identify patients with chronic pain in a primary care setting. J Am Med Inform Assoc. 2013;20(e2):e275-e280.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E2 , pp. e275-e280
    • Tian, T.Y.1    Zlateva, I.2    Anderson, D.R.3
  • 24
    • 84895867454 scopus 로고    scopus 로고
    • Invited commentary: Observational research in the age of the electronic health record
    • Chute CG. Invited commentary: Observational research in the age of the electronic health record. Am J Epidemiol. 2014;179(6):759-761.
    • (2014) Am J Epidemiol , vol.179 , Issue.6 , pp. 759-761
    • Chute, C.G.1
  • 25
    • 84919644131 scopus 로고    scopus 로고
    • Evaluation of matched control algorithms in EHR-based phenotyping studies: a case study of inflammatory bowel disease comorbidities
    • Castro VM, Apperson WK, Gainer VS, Ananthakrishnan AN, Goodson AP, Wang TD, et al. Evaluation of matched control algorithms in EHR-based phenotyping studies: a case study of inflammatory bowel disease comorbidities. J Biomed Inform. 2014;52:105-111.
    • (2014) J Biomed Inform , vol.52 , pp. 105-111
    • Castro, V.M.1    Apperson, W.K.2    Gainer, V.S.3    Ananthakrishnan, A.N.4    Goodson, A.P.5    Wang, T.D.6
  • 26
    • 84888200992 scopus 로고    scopus 로고
    • Applying active learning to high-throughput phenotyping algorithms for electronic health records data
    • Chen Y, Carroll RJ, Hinz ER, Shah A, Eyler AE, Denny JC, et al. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. J Am Med Inform Assoc. 2013;20(e2):e253-e259.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E2 , pp. e253-e259
    • Chen, Y.1    Carroll, R.J.2    Hinz, E.R.3    Shah, A.4    Eyler, A.E.5    Denny, J.C.6
  • 27
    • 84919418380 scopus 로고    scopus 로고
    • Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records
    • Sinnott JA, Dai W, Liao KP, Shaw SY, Ananthakrishnan AN, Gainer VS, et al. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records. Hum Genet. 2014;133(11): 1369-1382.
    • (2014) Hum Genet , vol.133 , Issue.11 , pp. 1369-1382
    • Sinnott, J.A.1    Dai, W.2    Liao, K.P.3    Shaw, S.Y.4    Ananthakrishnan, A.N.5    Gainer, V.S.6
  • 29
    • 0030128944 scopus 로고    scopus 로고
    • General bounds on the number of examples needed for learning probabilistic concepts
    • Simon HU. General bounds on the number of examples needed for learning probabilistic concepts. J Comput Syst Sci. 1996;52(2):239-254.
    • (1996) J Comput Syst Sci , vol.52 , Issue.2 , pp. 239-254
    • Simon, H.U.1
  • 30
    • 0013360743 scopus 로고    scopus 로고
    • On the sample complexity of noise-tolerant learning
    • Aslam JA and Decatur SE. On the sample complexity of noise-tolerant learning. Inform Process Lett. 1996;57(4):189-195.
    • (1996) Inform Process Lett , vol.57 , Issue.4 , pp. 189-195
    • Aslam, J.A.1    Decatur, S.E.2
  • 31
    • 84994738598 scopus 로고    scopus 로고
    • Accessed 13 December 2014
    • Observational Medical Outcomes Partnership. Health Outcomes of Interest. Available from: http://omop.org/HOI Accessed 13 December 2014.
    • Health Outcomes of Interest
  • 36
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • Friedman J, Hastie T, and Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1-22.
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 39
    • 84857165460 scopus 로고    scopus 로고
    • Impact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitus
    • Wei WQ, Leibson CL, Ransom JE, Kho AN, Caraballo PJ, Chai HS, et al. Impact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitus. J Am Med Inform Assoc. 2012;19(2):219-224.
    • (2012) J Am Med Inform Assoc , vol.19 , Issue.2 , pp. 219-224
    • Wei, W.Q.1    Leibson, C.L.2    Ransom, J.E.3    Kho, A.N.4    Caraballo, P.J.5    Chai, H.S.6
  • 41
    • 84890446404 scopus 로고    scopus 로고
    • Normalization and standardization of electronic health records for highthroughput phenotyping: the SHARPn consortium
    • Pathak J, Bailey KR, Beebe CE, Bethard S, Carrell DC, Chen PJ, et al. Normalization and standardization of electronic health records for highthroughput phenotyping: the SHARPn consortium. J Am Med Inform Assoc. 2013;20(e2):e341-e348.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.E2 , pp. e341-e348
    • Pathak, J.1    Bailey, K.R.2    Beebe, C.E.3    Bethard, S.4    Carrell, D.C.5    Chen, P.J.6
  • 42
    • 84994693610 scopus 로고    scopus 로고
    • Accessed 7 November 2015
    • OHDSI. Aphrodite. 2015; Available from: https://github.com/OHDSI/Aphrodite. Accessed 7 November 2015.
    • (2015) Aphrodite
  • 44
    • 84872022133 scopus 로고    scopus 로고
    • Chapter 13: Mining electronic health records in the genomics era
    • Denny JC. Chapter 13: Mining electronic health records in the genomics era. PLoS Comput Biol. 2012;8(12):e1002823.
    • (2012) PLoS Comput Biol , vol.8 , Issue.12
    • Denny, J.C.1
  • 45
    • 85017139682 scopus 로고    scopus 로고
    • Personalized Predictive Modeling and Risk Factor Identification using Patient Similarity
    • Ng K, Sun J, Hu J, and Wang F. Personalized Predictive Modeling and Risk Factor Identification using Patient Similarity. AMIA Jt Summits Transl Sci Proc. 2015;2015:132-136.
    • (2015) AMIA Jt Summits Transl Sci Proc , vol.2015 , pp. 132-136
    • Ng, K.1    Sun, J.2    Hu, J.3    Wang, F.4
  • 46
    • 84863666461 scopus 로고    scopus 로고
    • A clinical database-driven approach to decision support: Predicting mortality among patients with acute kidney injury
    • Celi LAG, Tang RJ, Villarroel MC, Davidzon GA, Lester WT, and Chueh HC. A clinical database-driven approach to decision support: Predicting mortality among patients with acute kidney injury. J Healthcare Engineering. 2011;2(1):97-110.
    • (2011) J Healthcare Engineering , vol.2 , Issue.1 , pp. 97-110
    • Celi, L.A.G.1    Tang, R.J.2    Villarroel, M.C.3    Davidzon, G.A.4    Lester, W.T.5    Chueh, H.C.6
  • 47
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Hripcsak G and Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013;20(1):117-121.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.1 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 48
    • 78650479527 scopus 로고    scopus 로고
    • Biomedical negation scope detection with conditional random fields
    • Agarwal S and Yu H. Biomedical negation scope detection with conditional random fields. J Am Med Inform Assoc. 2010;17(6):696-701.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.6 , pp. 696-701
    • Agarwal, S.1    Yu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.