메뉴 건너뛰기




Volumn 287, Issue 2, 2018, Pages 570-580

Natural language-based machine learning models for the annotation of clinical radiology reports

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COMPUTER ASSISTED TOMOGRAPHY; DATA PROCESSING; DIAGNOSTIC VALUE; ELECTRONIC MEDICAL RECORD; HUMAN; INFORMATION PROCESSING; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; MEASUREMENT ACCURACY; NATURAL LANGUAGE PROCESSING; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; VALIDATION STUDY; AREA UNDER THE CURVE; ELECTRONIC HEALTH RECORD; FACTUAL DATABASE; PROCEDURES; RADIOLOGY; X-RAY COMPUTED TOMOGRAPHY;

EID: 85046006819     PISSN: 00338419     EISSN: 15271315     Source Type: Journal    
DOI: 10.1148/radiol.2018171093     Document Type: Article
Times cited : (130)

References (50)
  • 1
    • 84930651751 scopus 로고    scopus 로고
    • Development of phenotype algorithms using electronic medical records and incorporating natural language processing
    • Liao KP, Cai T, Savova GK, et al. Development of phenotype algorithms using electronic medical records and incorporating natural language processing. BMJ 2015;350:h1885.
    • (2015) BMJ , vol.350 , pp. h1885
    • Liao, K.P.1    Cai, T.2    Savova, G.K.3
  • 2
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011;306(8):848-855.
    • (2011) JAMA , vol.306 , Issue.8 , pp. 848-855
    • Murff, H.J.1    FitzHenry, F.2    Matheny, M.E.3
  • 5
    • 84994689614 scopus 로고    scopus 로고
    • Learning statistical models of phenotypes using noisy labeled training data
    • Agarwal V, Podchiyska T, Banda JM, et al. Learning statistical models of phenotypes using noisy labeled training data. J Am Med Inform Assoc 2016;23(6):1166-1173.
    • (2016) J Am Med Inform Assoc , vol.23 , Issue.6 , pp. 1166-1173
    • Agarwal, V.1    Podchiyska, T.2    Banda, J.M.3
  • 6
    • 84895879370 scopus 로고    scopus 로고
    • Using natural language processing to improve efficiency of manual chart abstraction in research: The case of breast cancer recurrence
    • Carrell DS, Halgrim S, Tran DT, et al. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence. Am J Epidemiol 2014;179(6):749-758.
    • (2014) Am J Epidemiol , vol.179 , Issue.6 , pp. 749-758
    • Carrell, D.S.1    Halgrim, S.2    Tran, D.T.3
  • 7
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: Evaluation of a natural language processing system
    • Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak 2006;6(1):30.
    • (2006) BMC Med Inform Decis Mak , vol.6 , Issue.1 , pp. 30
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3    Sordo, M.4    Murphy, S.N.5    Lazarus, R.6
  • 8
    • 84965134347 scopus 로고    scopus 로고
    • Natural language processing in radiology: A systematic review
    • Pons E, Braun LM, Hunink MG, Kors JA. Natural language processing in radiology: a systematic review. Radiology 2016;279(2):329-343.
    • (2016) Radiology , vol.279 , Issue.2 , pp. 329-343
    • Pons, E.1    Braun, L.M.2    Hunink, M.G.3    Kors, J.A.4
  • 9
    • 12344287992 scopus 로고    scopus 로고
    • Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: Validation study
    • Dreyer KJ, Kalra MK, Maher MM, et al. Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study. Radiology 2005;234(2):323-329.
    • (2005) Radiology , vol.234 , Issue.2 , pp. 323-329
    • Dreyer, K.J.1    Kalra, M.K.2    Maher, M.M.3
  • 11
    • 84872246391 scopus 로고    scopus 로고
    • Automatic classification of mammography reports by BI-RADS breast tissue composition class
    • Percha B, Nassif H, Lipson J, Burnside E, Rubin D. Automatic classification of mammography reports by BI-RADS breast tissue composition class. J Am Med Inform Assoc 2012;19(5):913-916.
    • (2012) J Am Med Inform Assoc , vol.19 , Issue.5 , pp. 913-916
    • Percha, B.1    Nassif, H.2    Lipson, J.3    Burnside, E.4    Rubin, D.5
  • 12
    • 72849149323 scopus 로고    scopus 로고
    • Automated classification of radiology reports for acute lung injury: Comparison of keyword and machine learning based natural language processing approaches
    • Solti I, Cooke CR, Xia F, Wurfel MM. Automated classification of radiology reports for acute lung injury: comparison of keyword and machine learning based natural language processing approaches. Proceedings IEEE Int Conf Bioinformatics Biomed 2009;2009:314-319.
    • (2009) Proceedings IEEE Int Conf Bioinformatics Biomed , vol.2009 , pp. 314-319
    • Solti, I.1    Cooke, C.R.2    Xia, F.3    Wurfel, M.M.4
  • 13
    • 34548084959 scopus 로고    scopus 로고
    • Pittsburgh, Pa: Carnegie Mellon University, School of Computer Science, Machine Learning Department
    • Mitchell TM. The discipline of machine learning, Vol 3. Pittsburgh, Pa: Carnegie Mellon University, School of Computer Science, Machine Learning Department, 2006.
    • (2006) The Discipline of Machine Learning , vol.3
    • Mitchell, T.M.1
  • 14
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 17
    • 34748821126 scopus 로고    scopus 로고
    • A natural language processing system to extract and code concepts relating to congestive heart failure from chest radiology reports
    • Friedlin J, McDonald CJ. A natural language processing system to extract and code concepts relating to congestive heart failure from chest radiology reports. AMIA Annu Symp Proc 2006:269-273.
    • (2006) AMIA Annu Symp Proc , pp. 269-273
    • Friedlin, J.1    McDonald, C.J.2
  • 18
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • Platt JC, Koller D, Singer Y, Roweis ST, eds, Red Hook, NY: Curran Associates
    • Mcauliffe JD, Blei DM. Supervised topic models. In: Platt JC, Koller D, Singer Y, Roweis ST, eds. Advances in neural information processing systems 20. Red Hook, NY: Curran Associates, 2008;121-128.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 121-128
    • Mcauliffe, J.D.1    Blei, D.M.2
  • 21
    • 62049084378 scopus 로고    scopus 로고
    • Research electronic data capture (REDCap)- A metadata-driven methodology and workflow process for providing translational research informatics support
    • Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)- a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42(2):377-381.
    • (2009) J Biomed Inform , vol.42 , Issue.2 , pp. 377-381
    • Harris, P.A.1    Taylor, R.2    Thielke, R.3    Payne, J.4    Gonzalez, N.5    Conde, J.G.6
  • 22
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • Stubbs A, Uzuner Ö. Annotating risk factors for heart disease in clinical narratives for diabetic patients. J Biomed Inform 2015;58(Suppl): S78-S91.
    • (2015) J Biomed Inform , vol.58 , pp. S78-S91
    • Stubbs, A.1    Uzuner, Ö.2
  • 24
    • 84870490399 scopus 로고    scopus 로고
    • Published 2016. Accessed April 13, 2017
    • Project Gutenberg. http://www.gutenberg.org. Published 2016. Accessed April 13, 2017.
    • Project Gutenberg
  • 25
    • 84940056554 scopus 로고    scopus 로고
    • Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2
    • Stubbs A, Kotfila C, Xu H, Uzuner Ö. Identifying risk factors for heart disease over time: overview of 2014 i2b2/UTHealth shared task Track 2. J Biomed Inform 2015;58(Suppl): S67-S77.
    • (2015) J Biomed Inform , vol.58 , pp. S67-S77
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3    Uzuner, Ö.4
  • 27
    • 0038468602 scopus 로고
    • On sentence-length as a statistical characteristic of style in prose: With application to two cases of disputed authorship
    • Yule GU. On sentence-length as a statistical characteristic of style in prose: with application to two cases of disputed authorship. Biometrika 1939;30(3/4):363-390.
    • (1939) Biometrika , vol.30 , Issue.3-4 , pp. 363-390
    • Yule, G.U.1
  • 28
    • 79955930352 scopus 로고    scopus 로고
    • Universal entropy of word ordering across linguistic families
    • Montemurro MA, Zanette DH. Universal entropy of word ordering across linguistic families. PLoS One 2011;6(5):e19875.
    • (2011) PLoS One , vol.6 , Issue.5 , pp. e19875
    • Montemurro, M.A.1    Zanette, D.H.2
  • 29
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter MF. An algorithm for suffix stripping. Program. 1980;14(3):130-137.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.F.1
  • 30
    • 33747587813 scopus 로고    scopus 로고
    • Unsupervised learning
    • Bousquet O, von Luxburg U, Rätsch G, eds, Berlin, Germany: Springer-Verlag
    • Ghahramani Z. Unsupervised learning. In: Bousquet O, von Luxburg U, Rätsch G, eds. Advanced lectures on machine learning. Berlin, Germany: Springer-Verlag, 2004.
    • (2004) Advanced Lectures on Machine Learning
    • Ghahramani, Z.1
  • 34
    • 84863381525 scopus 로고    scopus 로고
    • Reading tea leaves: How humans interpret topic models
    • Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A, eds, Red Hook, NY: Curran Associates
    • Chang J, Gerrish S, Wang C, Boyd-Graber JL, Blei DM. Reading tea leaves: how humans interpret topic models. In: Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A, eds. Advances in Neural Information Processing Systems 22. Red Hook, NY: Curran Associates, 2009;288-296.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 288-296
    • Chang, J.1    Gerrish, S.2    Wang, C.3    Boyd-Graber, J.L.4    Blei, D.M.5
  • 35
    • 85046039133 scopus 로고    scopus 로고
    • Accessed April 13, 2017
    • DARIAH-DE. NLP Based Analysis of Literary Texts. https://github.com/stefanpernes/dariah-nlp-tutorial. Accessed April 13, 2017.
    • NLP Based Analysis of Literary Texts
  • 36
    • 84879301343 scopus 로고    scopus 로고
    • Reporting of critical findings in neuroradiology
    • Viertel VG, Trotter SA, Babiarz LS, et al. Reporting of critical findings in neuroradiology. AJR Am J Roentgenol 2013;200(5):1132-1137.
    • (2013) AJR Am J Roentgenol , vol.200 , Issue.5 , pp. 1132-1137
    • Viertel, V.G.1    Trotter, S.A.2    Babiarz, L.S.3
  • 38
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Oct.
    • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12(Oct):2825-2830.
    • (2011) J Mach Learn Res , vol.12 , pp. 2825-2830
    • Pedregosa, F.1    Varoquaux, G.2    Gramfort, A.3
  • 39
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. JRStat Soc Series B Stat Methodol 1996;58(1):267-288.
    • (1996) J R Stat Soc Series B Stat Methodol , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 40
    • 0034054634 scopus 로고    scopus 로고
    • Coding neuroradiology reports for the Northern Manhattan Stroke Study: A comparison of natural language processing and manual review
    • Elkins JS, Friedman C, Boden-Albala B, Sacco RL, Hripcsak G. Coding neuroradiology reports for the Northern Manhattan Stroke Study: a comparison of natural language processing and manual review. Comput Biomed Res 2000;33(1):1-10.
    • (2000) Comput Biomed Res , vol.33 , Issue.1 , pp. 1-10
    • Elkins, J.S.1    Friedman, C.2    Boden-Albala, B.3    Sacco, R.L.4    Hripcsak, G.5
  • 41
    • 85016515607 scopus 로고    scopus 로고
    • Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: A tool to estimate diagnostic yield
    • Hassanpour S, Langlotz CP, Amrhein TJ, Befera NT, Lungren MP. Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: a tool to estimate diagnostic yield. AJR Am J Roentgenol 2017;208(4):750-753.
    • (2017) AJR Am J Roentgenol , vol.208 , Issue.4 , pp. 750-753
    • Hassanpour, S.1    Langlotz, C.P.2    Amrhein, T.J.3    Befera, N.T.4    Lungren, M.P.5
  • 43
    • 85019722825 scopus 로고    scopus 로고
    • De-identification of patient notes with recurrent neural networks
    • Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am Med Inform Assoc 2017;24(3):596-606.
    • (2017) J Am Med Inform Assoc , vol.24 , Issue.3 , pp. 596-606
    • Dernoncourt, F.1    Lee, J.Y.2    Uzuner, O.3    Szolovits, P.4
  • 49
    • 57149138153 scopus 로고    scopus 로고
    • Towards scalable dataset construction: An active learning approach
    • Berlin, Germany: Springer
    • Collins B, Deng J, Li K, Fei-Fei L. Towards scalable dataset construction: an active learning approach. In: Computer Vision - ECCV 2008. Berlin, Germany: Springer, 2008;86-98.
    • (2008) Computer Vision - ECCV 2008 , pp. 86-98
    • Collins, B.1    Deng, J.2    Li, K.3    Fei-Fei, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.