메뉴 건너뛰기




Volumn 101, Issue , 2018, Pages 7-14

Conditional random fields for clinical named entity recognition: A comparative study using Korean clinical texts

Author keywords

Clinical named entity recognition; Conditional random field; Discharge summary; Medical history; String matching

Indexed keywords

DISEASES; HOSPITALS; IMAGE SEGMENTATION; RANDOM PROCESSES; SEMANTICS;

EID: 85050947903     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2018.07.019     Document Type: Article
Times cited : (17)

References (59)
  • 1
    • 85015192902 scopus 로고    scopus 로고
    • “Big data” and the electronic health record
    • Ross, M.K., Wei, W., Ohno-Machado, L., “Big data” and the electronic health record. Yearb. Med. Inf. 9 (2014), 97–104, 10.15265/IY-2014-0003.
    • (2014) Yearb. Med. Inf. , vol.9 , pp. 97-104
    • Ross, M.K.1    Wei, W.2    Ohno-Machado, L.3
  • 2
    • 33646822781 scopus 로고    scopus 로고
    • Systematic Review: impact of health information Technology on quality, efficiency, and costs of medical care
    • Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Morton, S.C., Shekelle, P.G., Systematic Review: impact of health information Technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 144 (2006), 742–752 https://doi.org/10.7326/0003-4819-144-10-200605160-00125.
    • (2006) Ann. Intern. Med. , vol.144 , pp. 742-752
    • Chaudhry, B.1    Wang, J.2    Wu, S.3    Maglione, M.4    Mojica, W.5    Roth, E.6    Morton, S.C.7    Shekelle, P.G.8
  • 3
    • 85050930157 scopus 로고    scopus 로고
    • Enterprise information portal
    • S. C, T. J, Enterprise information portal. 1998.
    • (1998)
    • S. C1    T. J2
  • 4
    • 85050919426 scopus 로고    scopus 로고
    • Big Content: the Unstructured Side of Big Data
    • Gartner Group, Big Content: the Unstructured Side of Big Data. 2013 http://blogs.gartner.com/darin-stewart/2013/05/01/big-content-the-unstructured-side-of-big-data/.
    • (2013)
    • Gartner Group1
  • 5
    • 84955738466 scopus 로고    scopus 로고
    • Unstructured Data in Electronic Health Record (EHR) Systems: Challenges and Solutions
    • DataMark Inc, Unstructured Data in Electronic Health Record (EHR) Systems: Challenges and Solutions. 2013 http://www.datamark.net/uploads/files/unstructured_ehr_data_white_%0Apaper.pdf.
    • (2013)
    • DataMark Inc1
  • 6
    • 84856961402 scopus 로고    scopus 로고
    • Adoption of electronic health records in Korean tertiary teaching and general hospitals
    • Yoon, D., Chang, B.-C., Kang, S.W., Bae, H., Park, R.W., Adoption of electronic health records in Korean tertiary teaching and general hospitals. Int. J. Med. Inf. 81 (2012), 196–203, 10.1016/j.ijmedinf.2011.12.002.
    • (2012) Int. J. Med. Inf. , vol.81 , pp. 196-203
    • Yoon, D.1    Chang, B.-C.2    Kang, S.W.3    Bae, H.4    Park, R.W.5
  • 7
    • 84930475686 scopus 로고    scopus 로고
    • Future directions for next-generation hospital information system
    • Choi, J., Future directions for next-generation hospital information system. Healthc. Inf. Res. 21 (2015), 1–2, 10.4258/hir.2015.21.1.1.
    • (2015) Healthc. Inf. Res. , vol.21 , pp. 1-2
    • Choi, J.1
  • 9
    • 84867322270 scopus 로고    scopus 로고
    • Modeling paradigms for medical diagnostic decision support: a survey and future directions
    • Wagholikar, K.B., Sundararajan, V., Deshpande, A.W., Modeling paradigms for medical diagnostic decision support: a survey and future directions. J. Med. Syst. 36 (2012), 3029–3049, 10.1007/s10916-011-9780-4.
    • (2012) J. Med. Syst. , vol.36 , pp. 3029-3049
    • Wagholikar, K.B.1    Sundararajan, V.2    Deshpande, A.W.3
  • 10
    • 85021238991 scopus 로고    scopus 로고
    • Recent advances in clinical natural language processing in support of semantic analysis
    • Velupillai, S., Mowery, D., South, B.R., Kvist, M., Dalianis, H., Recent advances in clinical natural language processing in support of semantic analysis. Yearb. Med. Inf. 10 (2015), 183–193, 10.15265/IY-2015-009.
    • (2015) Yearb. Med. Inf. , vol.10 , pp. 183-193
    • Velupillai, S.1    Mowery, D.2    South, B.R.3    Kvist, M.4    Dalianis, H.5
  • 11
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge
    • Patrick, J., Li, M., High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J. Am. Med. Inf. Assoc. 17 (2010), 524–527, 10.1136/jamia.2010.003939.
    • (2010) J. Am. Med. Inf. Assoc. , vol.17 , pp. 524-527
    • Patrick, J.1    Li, M.2
  • 12
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 Challenge
    • Sun, W., Rumshisky, A., Uzuner, O., Evaluating temporal relations in clinical text: 2012 i2b2 Challenge. J. Am. Med. Inf. Assoc., 2013, 1–8, 10.1136/amiajnl-2013-001628.
    • (2013) J. Am. Med. Inf. Assoc. , pp. 1-8
    • Sun, W.1    Rumshisky, A.2    Uzuner, O.3
  • 13
    • 80053292637 scopus 로고    scopus 로고
    • i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner, Ö., South, B.R., Shen, S., DuVall, S.L., i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inf. Assoc. 18:2011 (2010), 552–556, 10.1136/amiajnl-2011-000203.
    • (2010) J. Am. Med. Inf. Assoc. , vol.18 , Issue.2011 , pp. 552-556
    • Uzuner, Ö.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 14
    • 85021787795 scopus 로고    scopus 로고
    • Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge
    • Zhang, Y., Zhang, O., Wu, Y., Lee, H.-J., Xu, J., Xu, H., Roberts, K., Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge. J. Biomed. Inf., 2017 https://doi.org/10.1016/j.jbi.2017.06.014.
    • (2017) J. Biomed. Inf.
    • Zhang, Y.1    Zhang, O.2    Wu, Y.3    Lee, H.-J.4    Xu, J.5    Xu, H.6    Roberts, K.7
  • 15
    • 84940056554 scopus 로고    scopus 로고
    • Identifying risk factors for heart disease over time: overview of 2014 i2b2/UTHealth shared task Track 2
    • Stubbs, A., Kotfila, C., Xu, H., Uzuner, Ö., Identifying risk factors for heart disease over time: overview of 2014 i2b2/UTHealth shared task Track 2. J. Biomed. Inf. 58 (2015), S67–S77, 10.1016/j.jbi.2015.07.001.
    • (2015) J. Biomed. Inf. , vol.58 , pp. S67-S77
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3    Uzuner, Ö.4
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random Fields : probabilistic models for segmenting and labeling sequence data
    • 2001
    • Lafferty, John, McCallum, Andrew, Pereira, Fernando, Conditional random Fields : probabilistic models for segmenting and labeling sequence data. 2001 Proc. 18th Int. Conf. Mach. Learn, 2001, 282–289.
    • (2001) Proc. 18th Int. Conf. Mach. Learn , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 19
    • 84981274678 scopus 로고    scopus 로고
    • Overview of the NTCIR-10 MedNLP task
    • Morita, M., Kano, Y., Ohkuma, T., Miyabe, M., Aramaki, E., Overview of the NTCIR-10 MedNLP task. 10th NTCIR Conf., 2013, 696–701 http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/NTCIR/toc_ntcir.html.
    • (2013) 10th NTCIR Conf. , pp. 696-701
    • Morita, M.1    Kano, Y.2    Ohkuma, T.3    Miyabe, M.4    Aramaki, E.5
  • 20
    • 84904336038 scopus 로고    scopus 로고
    • Rule-based information extraction is Dead ! Long live rule-based information extraction systems!
    • Chiticariu, L., Reiss, F.R., Rule-based information extraction is Dead ! Long live rule-based information extraction systems!. EMNLP, 2013, 827–832.
    • (2013) EMNLP , pp. 827-832
    • Chiticariu, L.1    Reiss, F.R.2
  • 21
    • 84882783145 scopus 로고    scopus 로고
    • Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text
    • Eriksson, R., Jensen, P.B., Frankild, S., Jensen, L.J., Brunak, S., Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text. J. Am. Med. Inf. Assoc. 20 (2013), 947–953, 10.1136/amiajnl-2013-001708.
    • (2013) J. Am. Med. Inf. Assoc. , vol.20 , pp. 947-953
    • Eriksson, R.1    Jensen, P.B.2    Frankild, S.3    Jensen, L.J.4    Brunak, S.5
  • 22
    • 84930934865 scopus 로고    scopus 로고
    • Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
    • Jung, K., LePendu, P., Iyer, S., Bauer-Mehren, A., Percha, B., Shah, N.H., Functional evaluation of out-of-the-box text-mining tools for data-mining tasks. J. Am. Med. Inf. Assoc. 22 (2015), 121–131, 10.1136/amiajnl-2014-002902.
    • (2015) J. Am. Med. Inf. Assoc. , vol.22 , pp. 121-131
    • Jung, K.1    LePendu, P.2    Iyer, S.3    Bauer-Mehren, A.4    Percha, B.5    Shah, N.H.6
  • 23
    • 85076750421 scopus 로고    scopus 로고
    • Medical entity Recognition : a comparison of semantic and statistical methods
    • Ben Abacha, A., Zweigenbaum, P., Medical entity Recognition : a comparison of semantic and statistical methods. Proc. BioNLP 2011 Work, 2011, 56–64.
    • (2011) Proc. BioNLP 2011 Work , pp. 56-64
    • Ben Abacha, A.1    Zweigenbaum, P.2
  • 24
    • 0035752429 scopus 로고    scopus 로고
    • Effective Mapping of Biomedical Text to the UMLS Metathesaurus : the MetaMap Program
    • Aronson, A.R., Effective Mapping of Biomedical Text to the UMLS Metathesaurus : the MetaMap Program. 2001, 17–21.
    • (2001) , pp. 17-21
    • Aronson, A.R.1
  • 25
    • 84902545076 scopus 로고    scopus 로고
    • Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study
    • Skeppstedt, M., Kvist, M., Nilsson, G.H., Dalianis, H., Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study. J. Biomed. Inf. 49 (2014), 148–158, 10.1016/j.jbi.2014.01.012.
    • (2014) J. Biomed. Inf. , vol.49 , pp. 148-158
    • Skeppstedt, M.1    Kvist, M.2    Nilsson, G.H.3    Dalianis, H.4
  • 26
    • 84906308068 scopus 로고    scopus 로고
    • A comprehensive study of named entity recognition in Chinese clinical text
    • Lei, J., Tang, B., Lu, X., Gao, K., Jiang, M., Xu, H., A comprehensive study of named entity recognition in Chinese clinical text. J. Am. Med. Inf. Assoc. 21 (2014), 808–814, 10.1136/amiajnl-2013-002381.
    • (2014) J. Am. Med. Inf. Assoc. , vol.21 , pp. 808-814
    • Lei, J.1    Tang, B.2    Lu, X.3    Gao, K.4    Jiang, M.5    Xu, H.6
  • 27
    • 85020419299 scopus 로고    scopus 로고
    • De-identification of clinical notes via recurrent neural network and conditional random field
    • Liu, Z., Tang, B., Wang, X., Chen, Q., De-identification of clinical notes via recurrent neural network and conditional random field. J. Biomed. Inf., 2017, 10.1016/j.jbi.2017.05.023.
    • (2017) J. Biomed. Inf.
    • Liu, Z.1    Tang, B.2    Wang, X.3    Chen, Q.4
  • 28
    • 85021702868 scopus 로고    scopus 로고
    • Entity recognition from clinical texts via recurrent neural network
    • Liu, Z., Yang, M., Wang, X., Chen, Q., Tang, B., Wang, Z., Xu, H., Entity recognition from clinical texts via recurrent neural network. BMC Med. Inf. Decis. Making 17 (2017), 53–60, 10.1186/s12911-017-0468-7.
    • (2017) BMC Med. Inf. Decis. Making , vol.17 , pp. 53-60
    • Liu, Z.1    Yang, M.2    Wang, X.3    Chen, Q.4    Tang, B.5    Wang, Z.6    Xu, H.7
  • 29
    • 0034076992 scopus 로고    scopus 로고
    • Understanding terminological systems II : experience with conceptual and formal representation of structure
    • de Keizer, N., Hanna, A.A., Understanding terminological systems II : experience with conceptual and formal representation of structure. Meth. Inf. Med. 39 (2000), 22–29.
    • (2000) Meth. Inf. Med. , vol.39 , pp. 22-29
    • de Keizer, N.1    Hanna, A.A.2
  • 30
    • 3342909785 scopus 로고    scopus 로고
    • Korean Morphological Analysis and Information Retrieval
    • Hong-Reung publisher (Accessed 6 October 2016)
    • Kang, S.S., Korean Morphological Analysis and Information Retrieval. 2002, Hong-Reung publisher http://nlp.kookmin.ac.kr/HAM/kor/. (Accessed 6 October 2016)
    • (2002)
    • Kang, S.S.1
  • 32
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (1989), 257–286, 10.1109/5.18626.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 33
    • 0003678451 scopus 로고
    • Markov fields on Finite Graphs and Lattices
    • Hammersley, J.M., Clifford, P., Markov fields on Finite Graphs and Lattices. 1971.
    • (1971)
    • Hammersley, J.M.1    Clifford, P.2
  • 34
    • 79961054524 scopus 로고    scopus 로고
    • An Introduction to Conditional Random Fields
    • Sutton, C., Mccallum, A., An Introduction to Conditional Random Fields. 2010.
    • (2010)
    • Sutton, C.1    Mccallum, A.2
  • 35
    • 1542370010 scopus 로고    scopus 로고
    • MALLET: a Machine Learning for Language Toolkit
    • (Accessed 27 March 2013)
    • Kachites McCallum, Andrew, MALLET: a Machine Learning for Language Toolkit. 2002 http://mallet.cs.umass.edu. (Accessed 27 March 2013)
    • (2002)
    • Kachites McCallum, A.1
  • 37
    • 70649111792 scopus 로고    scopus 로고
    • Probabilistic Graphical Models: Principles and Techniques
    • MIT press
    • Koller, D., Friedman, N., Probabilistic Graphical Models: Principles and Techniques. 2009, MIT press.
    • (2009)
    • Koller, D.1    Friedman, N.2
  • 39
    • 0015600423 scopus 로고
    • The Viterbi algorithm
    • Forney, G.D., The Viterbi algorithm. Proc. IEEE, 1973, 268–278, 10.1109/PROC.1973.9030.
    • (1973) Proc. IEEE , pp. 268-278
    • Forney, G.D.1
  • 41
    • 7444236194 scopus 로고    scopus 로고
    • UIMA: an architectural approach to unstructured information processing in the corporate research environment
    • Ferrucci, D., Lally, A., UIMA: an architectural approach to unstructured information processing in the corporate research environment. Nat. Lang. Eng. 10 (2004), 327–348 https://doi.org/10.1017/S1351324904003523.
    • (2004) Nat. Lang. Eng. , vol.10 , pp. 327-348
    • Ferrucci, D.1    Lally, A.2
  • 42
    • 85050929442 scopus 로고    scopus 로고
    • s for Disease Control & Prevention, Korea Centers Dis. Control Prev. (n.d.).
    • Korea Centers for Disease Control & Prevention, Korea Centers Dis. Control Prev. (n.d.). http://health.cdc.go.kr/health.
    • Korea Center1
  • 44
    • 85050904919 scopus 로고    scopus 로고
    • of Medical Science, (n.d.).
    • Korean Association of Medical Science, (n.d.). http://www.kams.or.kr.
    • Korean Association1
  • 45
    • 85050911348 scopus 로고    scopus 로고
    • Lab Tests Online, (n.d.).
    • Lab Tests Online, (n.d.). http://www.labtestsonline.kr/.
  • 46
    • 85050906801 scopus 로고    scopus 로고
    • Ministry of Health and Welfare, (n.d.).
    • Ministry of Health and Welfare, (n.d.). http://www.mohw.go.kr.
  • 48
    • 85050916390 scopus 로고    scopus 로고
    • of Anatomists, (n.d.).
    • Korean Association of Anatomists, (n.d.). http://www.anatomy.re.kr.
    • Korean Association1
  • 51
    • 85050952764 scopus 로고    scopus 로고
    • Comparative analysis of medical terminology among Korea, China, and Japan in the field of cardiopulmonary bypass
    • Kim, W.G., Comparative analysis of medical terminology among Korea, China, and Japan in the field of cardiopulmonary bypass. Korean J. Thorac. Cardiovasc. Surg. 40 (2007), 159–167.
    • (2007) Korean J. Thorac. Cardiovasc. Surg. , vol.40 , pp. 159-167
    • Kim, W.G.1
  • 52
    • 0000679216 scopus 로고
    • Distributional structure
    • Harris, Z.S., Distributional structure. Word 10 (1954), 146–162.
    • (1954) Word , vol.10 , pp. 146-162
    • Harris, Z.S.1
  • 54
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., Distributed representations of words and phrases and their compositionality. NIPS, 2013, 3111–3119.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 56
    • 68949137209 scopus 로고    scopus 로고
    • Active Learning Literature Survey
    • Settles, B., Active Learning Literature Survey. 2010.
    • (2010)
    • Settles, B.1
  • 57
    • 84978064488 scopus 로고    scopus 로고
    • On active annotation for named entity recognition
    • Ekbal, A., Saha, S., Kumar, U., On active annotation for named entity recognition. Int. J. Mach. Learn. Cybern. 4 (2014), 623–640, 10.1007/s13042-014-0275-8.
    • (2014) Int. J. Mach. Learn. Cybern. , vol.4 , pp. 623-640
    • Ekbal, A.1    Saha, S.2    Kumar, U.3
  • 58
    • 84949514782 scopus 로고    scopus 로고
    • Identifying adverse drug event information in clinical notes with distributional semantic representations of context
    • Henriksson, A., Kvist, M., Dalianis, H., Duneld, M., Identifying adverse drug event information in clinical notes with distributional semantic representations of context. J. Biomed. Inf. 57 (2015), 333–349, 10.1016/j.jbi.2015.08.013.
    • (2015) J. Biomed. Inf. , vol.57 , pp. 333-349
    • Henriksson, A.1    Kvist, M.2    Dalianis, H.3    Duneld, M.4
  • 59
    • 84949322456 scopus 로고    scopus 로고
    • Pharmacovigilance through the development of text mining and natural language processing techniques
    • Segura-Bedmar, I., Martínez, P., Pharmacovigilance through the development of text mining and natural language processing techniques. J. Biomed. Inf. 58 (2015), 288–291, 10.1016/j.jbi.2015.11.001.
    • (2015) J. Biomed. Inf. , vol.58 , pp. 288-291
    • Segura-Bedmar, I.1    Martínez, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.