메뉴 건너뛰기




Volumn , Issue , 2011, Pages 56-64

Medical entity recognition: A comparison of semantic and statistical methods

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); LEARNING ALGORITHMS; MACHINE LEARNING; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS;

EID: 85076750421     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (80)

References (22)
  • 1
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program
    • Alan R. Aronson. 2001. Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program. In AMIA Annu Symp Proc, pages 17-21.
    • (2001) AMIA Annu Symp Proc , pp. 17-21
    • Aronson, Alan R.1
  • 2
    • 84857742567 scopus 로고    scopus 로고
    • Automatic extraction of semantic relations between medical entities: a rule based approach
    • Press
    • Asma Ben Abacha and Pierre Zweigenbaum. 2011. Automatic extraction of semantic relations between medical entities: a rule based approach. Journal of Biomedical Semantics. In Press.
    • (2011) Journal of Biomedical Semantics
    • Abacha, Asma Ben1    Zweigenbaum, Pierre2
  • 5
    • 84998985254 scopus 로고    scopus 로고
    • Learning patterns for building resources about semantic relations in the medical domain
    • May
    • Mehdi Embarek and Olivier Ferret. 2008. Learning patterns for building resources about semantic relations in the medical domain. In LREC'08, May.
    • (2008) LREC'08
    • Embarek, Mehdi1    Ferret, Olivier2
  • 6
    • 0036706501 scopus 로고    scopus 로고
    • Two biomedical sublanguages: a description based on the theories of Zellig Harris
    • Carol Friedman, Pauline Kra, and Andrey Rzhetsky. 2002. Two biomedical sublanguages: a description based on the theories of Zellig Harris. Journal of Biomedical Informatics, 35:222-235.
    • (2002) Journal of Biomedical Informatics , vol.35 , pp. 222-235
    • Friedman, Carol1    Kra, Pauline2    Rzhetsky, Andrey3
  • 7
    • 73949154960 scopus 로고    scopus 로고
    • Biological entity recognition with Conditional Random Fields
    • Ying He and Mehmet Kayaalp. 2008. Biological entity recognition with Conditional Random Fields. In AMIA Annu Symp Proc, pages 293-297.
    • (2008) AMIA Annu Symp Proc , pp. 293-297
    • He, Ying1    Kayaalp, Mehmet2
  • 8
    • 1642296635 scopus 로고    scopus 로고
    • Efficient support vector classifiers for named entity recognition
    • Hideki Isozaki and Hideto Kazawa. 2002. Efficient support vector classifiers for named entity recognition. In Proceedings of COLING-2002, pages 390-396.
    • (2002) Proceedings of COLING-2002 , pp. 390-396
    • Isozaki, Hideki1    Kazawa, Hideto2
  • 9
    • 79952756879 scopus 로고    scopus 로고
    • Comparing and combining chunkers of biomedical text
    • nov
    • N Kang, EM van Mulligen, and JA Kors. 2010. Comparing and combining chunkers of biomedical text. J Biomed Inform, 44(2):354-360, nov.
    • (2010) J Biomed Inform , vol.44 , Issue.2 , pp. 354-360
    • Kang, N1    van Mulligen, EM2    Kors, JA3
  • 10
    • 25144516565 scopus 로고    scopus 로고
    • Empirical textual mining to protein entities recognition from PubMed corpus
    • Tyne Liang and Ping-Ke Shih. 2005. Empirical textual mining to protein entities recognition from PubMed corpus. In NLDB'05, pages 56-66.
    • (2005) NLDB'05 , pp. 56-66
    • Liang, Tyne1    Shih, Ping-Ke2
  • 11
    • 39049190745 scopus 로고    scopus 로고
    • Comparing natural language processing tools to extract medical problems from narrative text
    • Stéphane M. Meystre and Peter J. Haug. 2005. Comparing natural language processing tools to extract medical problems from narrative text. In AMIA Annu Symp Proc, pages 525-529.
    • (2005) AMIA Annu Symp Proc , pp. 525-529
    • Meystre, Stéphane M.1    Haug, Peter J.2
  • 12
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • S M Meystre, G K Savova, K C Kipper-Schuler, and J F Hurdle. 2008. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform, 35:128-44.
    • (2008) Yearb Med Inform , vol.35 , pp. 128-144
    • Meystre, S M1    Savova, G K2    Kipper-Schuler, K C3    Hurdle, J F4
  • 13
    • 0002353623 scopus 로고    scopus 로고
    • Detecting gene symbols and names in biological texts: A first step toward pertinent information extraction
    • Tokyo, Japan: Universal Academy Press
    • Denys Proux, François Rechenmann, Laurent Julliard, Violaine Pillet, and Bernard Jacq. 1998. Detecting gene symbols and names in biological texts: A first step toward pertinent information extraction. In Proceedings of Genome Informatics, pages 72-80, Tokyo, Japan: Universal Academy Press.
    • (1998) Proceedings of Genome Informatics , pp. 72-80
    • Proux, Denys1    Rechenmann, François2    Julliard, Laurent3    Pillet, Violaine4    Jacq, Bernard5
  • 16
    • 0028967173 scopus 로고
    • Medical language processing: applications to patient data representation and automatic encoding
    • N Sager, M Lyman, N T Nhàn, and L J Tick. 1995. Medical language processing: applications to patient data representation and automatic encoding. Meth Inform Med, 34(1-2):140-6.
    • (1995) Meth Inform Med , vol.34 , Issue.1-2 , pp. 140-146
    • Sager, N1    Lyman, M2    Nhàn, N T3    Tick, L J4
  • 17
    • 16544373807 scopus 로고    scopus 로고
    • Extracting structured information from free text pathology reports
    • Washington, DC
    • G Shadow and C MacDonald. 2003. Extracting structured information from free text pathology reports. In AMIA Annu Symp Proc, Washington, DC.
    • (2003) AMIA Annu Symp Proc
    • Shadow, G1    MacDonald, C2
  • 18
    • 84886617562 scopus 로고    scopus 로고
    • Champs Markoviens Conditionnels pour l'extraction d'information
    • Éric Gaussier and François Yvon, editors, Hermès, Paris
    • Isabelle Tellier and Marc Tommasi. 2010. Champs Markoviens Conditionnels pour l'extraction d'information. In Éric Gaussier and François Yvon, editors, Modèles probabilistes pour l'accès à l'information textuelle. Hermès, Paris.
    • (2010) Modèles probabilistes pour l'accès à l'information textuelle
    • Tellier, Isabelle1    Tommasi, Marc2
  • 20
    • 51049117464 scopus 로고    scopus 로고
    • Rule-based protein term identification with help from automatic species tagging
    • Xinglong Wang. 2007. Rule-based protein term identification with help from automatic species tagging. In Proceedings of CICLING 2007, pages 288-298.
    • (2007) Proceedings of CICLING 2007 , pp. 288-298
    • Wang, Xinglong1
  • 22
    • 84888036325 scopus 로고    scopus 로고
    • Building a text corpus for representing the variety of medical language
    • L. Patel, R. Rogers, and R. Haux, editors, pages Londres
    • Pierre Zweigenbaum, Pierre Jacquemart, Natalia Grabar, and Benoît Habert. 2001. Building a text corpus for representing the variety of medical language. In V. L. Patel, R. Rogers, and R. Haux, editors, Proceedings of Medinfo 2001, pages 290-294, Londres.
    • (2001) Proceedings of Medinfo 2001 , pp. 290-294
    • Zweigenbaum, Pierre1    Jacquemart, Pierre2    Grabar, Natalia3    Habert, Benoît4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.