메뉴 건너뛰기




Volumn 21, Issue 5, 2014, Pages 808-814

A comprehensive study of named entity recognition in Chinese clinical text

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BOOK; CHINA; CHINESE; ENTROPY; MACHINE LEARNING; NAMED ENTITY RECOGNITION; NATURAL LANGUAGE PROCESSING; RECALL; SUPPORT VECTOR MACHINE;

EID: 84906308068     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2013-002381     Document Type: Article
Times cited : (178)

References (30)
  • 1
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008:128-44.
    • (2008) Yearb Med Inform , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 2
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011;18:552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3
  • 5
    • 47749122510 scopus 로고    scopus 로고
    • A survey of named entity recognition and classification
    • Nadeau D, Sekine S. A survey of named entity recognition and classification. Lingvisticae Investig 2007;30:3-26.
    • (2007) Lingvisticae Investig , vol.30 , pp. 3-26
    • Nadeau, D.1    Sekine, S.2
  • 6
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994;1:161-74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 7
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc 2010;17:229-36.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F-M.2
  • 8
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17:514-18.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 9
    • 80053241946 scopus 로고    scopus 로고
    • Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010
    • de Bruijn B, Cherry C, Kiritchenko S, et al. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J Am Med Inform Assoc 2011;18:557-62.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 557-562
    • de Bruijn, B.1    Cherry, C.2    Kiritchenko, S.3
  • 10
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • Jiang M, Chen Y, Liu M, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc 2011;18:601-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3
  • 12
    • 84875945878 scopus 로고    scopus 로고
    • Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features
    • Tang B, Cao H, Wu Y, et al. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Med Inform Decis Mak 2013;13:1-10.
    • (2013) BMC Med Inform Decis Mak , vol.13 , pp. 1-10
    • Tang, B.1    Cao, H.2    Wu, Y.3
  • 13
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data
    • Lafferty J, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. Departmental Papers (CIS), 2001.
    • (2001) Departmental Papers (CIS)
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.N.3
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 84945520073 scopus 로고    scopus 로고
    • Use of support vector learning for chunk identification, presented at the Proceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational natural language learnin
    • Kudoh T, Matsumoto Y. "Use of support vector learning for chunk identification," presented at the Proceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational natural language learning. Vol 7, 2000:142-4.
    • (2000) , vol.7 , pp. 142-144
    • Kudoh, T.1    Matsumoto, Y.2
  • 16
    • 0038420544 scopus 로고    scopus 로고
    • Chunking with support vector machines
    • presented at the NAACL '01: Second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies 2001
    • Kudo T, Matsumoto Y. "Chunking with support vector machines," presented at the NAACL '01: Second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies 2001, 2001:1-8.
    • (2001) , pp. 1-8
    • Kudo, T.1    Matsumoto, Y.2
  • 18
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis I, Joachims T, Hofmann T, et al. Large margin methods for structured and interdependent output variables. J Mach Learn Res 2005;6:1453-84.
    • (2005) J Mach Learn Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3
  • 19
    • 85000682648 scopus 로고    scopus 로고
    • Recognition of Chinese Medicine Named Entity Based on Condition Random Field
    • Wang S, Li S, Chen T. Recognition of Chinese Medicine Named Entity Based on Condition Random Field. J Xiamen University (Natural Science) 2009;48:349-64.
    • (2009) J Xiamen University (Natural Science) , vol.48 , pp. 349-364
    • Wang, S.1    Li, S.2    Chen, T.3
  • 20
    • 84906318760 scopus 로고    scopus 로고
    • A preliminary work on symptom name recognition from free-text clinical records of traditional chinese medicine using conditional random fields and reasonable features
    • Wang Y, Liu Y, Yu Z, et al. A preliminary work on symptom name recognition from free-text clinical records of traditional chinese medicine using conditional random fields and reasonable features. Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, Stroudsburg, PA, USA, 2012:223-30.
    • (2012) Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, Stroudsburg, PA, USA, , pp. 223-230
    • Wang, Y.1    Liu, Y.2    Yu, Z.3
  • 21
    • 84893553052 scopus 로고    scopus 로고
    • Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries
    • Xu Y, Wang Y, Liu T, et al. Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries. J Am Med Inform Assoc 2014;21:e84-92.
    • (2014) J Am Med Inform Assoc , vol.21
    • Xu, Y.1    Wang, Y.2    Liu, T.3
  • 23
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: a fast algorithm for training support vector machines
    • Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. Technique Report 1998:1-21.
    • (1998) Technique Report , pp. 1-21
    • Platt, J.1
  • 26
    • 0001573124 scopus 로고
    • Generalized Iterative Scaling for Log-Linear Models
    • Darroch J, Ratcliff D. Generalized Iterative Scaling for Log-Linear Models. Ann Math Stat 1972;43:1470-80.
    • (1972) Ann Math Stat , vol.43 , pp. 1470-1480
    • Darroch, J.1    Ratcliff, D.2
  • 27
    • 3343012886 scopus 로고
    • A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries
    • Head JD, Zerner MC. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem Phys Lett 1985;122:264-70.
    • (1985) Chem Phys Lett , vol.122 , pp. 264-270
    • Head, J.D.1    Zerner, M.C.2
  • 28
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Programming 1989;45:503-28.
    • (1989) Math Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 29
    • 34250731290 scopus 로고    scopus 로고
    • Accelerated training of conditional random fields with stochastic gradient methods
    • Vishwanathan SVN, Schraudolph NN, Schmidt MW, et al. Accelerated training of conditional random fields with stochastic gradient methods. ICML, 2006: 969-76.
    • (2006) ICML, , pp. 969-976
    • Vishwanathan, S.V.N.1    Schraudolph, N.N.2    Schmidt, M.W.3
  • 30
    • 18044385763 scopus 로고    scopus 로고
    • Agreement, the F-Measure, and Reliability in Information Retrieval
    • Hripcsak G, Rothschild AS. Agreement, the F-Measure, and Reliability in Information Retrieval. J Am Med Inform Assoc 2005;12:296-8.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 296-298
    • Hripcsak, G.1    Rothschild, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.