메뉴 건너뛰기




Volumn 20, Issue 5, 2013, Pages 806-813

Evaluating temporal relations in clinical text: 2012 i2b2 Challenge

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; FOLLOW UP; HOSPITAL ADMISSION; MACHINE LEARNING; MEDICAL INFORMATICS; NATURAL LANGUAGE PROCESSING; PRACTICE GUIDELINE; REVIEW; TEMPORAL ANALYSIS;

EID: 84882744737     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2013-001628     Document Type: Review
Times cited : (398)

References (45)
  • 2
    • 33745845169 scopus 로고    scopus 로고
    • A temporal constraint structure for extracting temporal information from clinical narrative
    • Zhou L, Melton GB, Parsons S, et al. A temporal constraint structure for extracting temporal information from clinical narrative. J Biomedical Inform 2006;39: 424-39.
    • (2006) J Biomedical Inform , vol.39 , pp. 424-439
    • Zhou, L.1    Melton, G.B.2    Parsons, S.3
  • 3
    • 79951501657 scopus 로고    scopus 로고
    • Towards temporal relation discovery from the clinical narrative
    • San Francisco, CA, USA: American Medical Informatics Association
    • Savova G, Bethard S, Styler W, et al. Towards temporal relation discovery from the clinical narrative. San Francisco, CA, USA: AMIA Annual Symposium Proceedings, Vol 2009. American Medical Informatics Association, 2009:568.
    • (2009) AMIA Annual Symposium Proceedings , vol.2009 , pp. 568
    • Savova, G.1    Bethard, S.2    Styler, W.3
  • 4
    • 34548508913 scopus 로고    scopus 로고
    • Evaluating the state-of-the-art in automatic de-identification
    • Uzuner Ö, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J Am Med Inform Assoc 2007;14:550-63.
    • (2007) J Am Med Inform Assoc , vol.14 , pp. 550-563
    • Uzuner, O.1    Luo, Y.2    Szolovits, P.3
  • 5
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner Ö, Goldstein I, Luo Y, et al. Identifying patient smoking status from medical discharge records. J Am Med Inform Assoc 2008;15:14-24.
    • (2008) J Am Med Inform Assoc , vol.15 , pp. 14-24
    • Uzuner, O.1    Goldstein, I.2    Luo, Y.3
  • 6
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc 2009;16:561-70.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 561-570
    • Uzuner, O.1
  • 7
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17:514-8.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 8
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011;18: 552-6.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3
  • 9
    • 84872234230 scopus 로고    scopus 로고
    • Evaluating the state of the art in coreference resolution for electronic medical records
    • Uzuner O, Bodnari A, Shen S, et al. Evaluating the state of the art in coreference resolution for electronic medical records. J Am Med Inform Assoc 2012;00.
    • (2012) J Am Med Inform Assoc
    • Uzuner, O.1    Bodnari, A.2    Shen, S.3
  • 17
    • 84983043509 scopus 로고    scopus 로고
    • CNTRO: a semantic web ontology for temporal relation inferencing in clinical narratives
    • American Medical Informatics Association
    • Tao C, Wei WQ, Solbrig HR, et al. CNTRO: a semantic web ontology for temporal relation inferencing in clinical narratives. Washington DC, USA: AMIA Annual Symposium Proceedings; Vol 2010. American Medical Informatics Association, 2010:787.
    • (2010) Washington DC, USA: AMIA Annual Symposium Proceedings , vol.2010 , pp. 787
    • Tao, C.1    Wei, W.Q.2    Solbrig, H.R.3
  • 20
    • 33847640080 scopus 로고    scopus 로고
    • Temporal reasoning with medical data-a review with emphasis on medical natural language processing
    • Zhou L, Hripcsak G. Temporal reasoning with medical data-a review with emphasis on medical natural language processing. J Biomed Inform 2007; 40:183.
    • (2007) J Biomed Inform , vol.40 , pp. 183
    • Zhou, L.1    Hripcsak, G.2
  • 21
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008;35:128-44.
    • (2008) Yearb Med Inform , vol.35 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 22
    • 84882743631 scopus 로고    scopus 로고
    • ISO 8601:2004 Data elements and interchange formats-Information interchange-Representation of dates and times. (accessed 20 Jan 2012)
    • ISO 8601:2004 Data elements and interchange formats-Information interchange-Representation of dates and times. http://www.iso.org/iso/catalogue_detail?csnumber=40874 (accessed 20 Jan 2012)
  • 23
    • 84882759389 scopus 로고    scopus 로고
    • Temporal Histories of Your Medical Events, THYME. (accessed 29 Feb 2012)
    • Temporal Histories of Your Medical Events, THYME. https://clear.colorado.edu/TemporalWiki/index.php/Main_Page (accessed 29 Feb 2012).
  • 24
    • 84859023299 scopus 로고    scopus 로고
    • Temporal evaluation
    • Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, PA, USA: Association for Computational Linguistics Stroudsburg
    • UzZaman N, Allen JF. Temporal evaluation. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (Short Paper); PA, USA: Association for Computational Linguistics Stroudsburg, 2011;2:351-6.
    • (2011) Human Language Technologies (Short Paper) , vol.2 , pp. 351-356
    • UzZaman, N.1    Allen, J.F.2
  • 25
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data
    • San Francisco, CA, US: Morgan Kaufmann Publishers Inc.
    • Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. Proceeding of the 18th International Conf. on Machine Learning. San Francisco, CA, US: Morgan Kaufmann Publishers Inc. 2001, 282-9.
    • (2001) Proceeding of the 18th International Conf on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learning 1995;20:273-97.
    • (1995) Mach Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 27
    • 84881139675 scopus 로고    scopus 로고
    • A hybrid system for temporal information extraction from clinical text
    • Tang B, Wu Y, Jiang M, et al. A hybrid system for temporal information extraction from clinical text. J Am Med Inform Assoc 2013;20:828-35.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 828-835
    • Tang, B.1    Wu, Y.2    Jiang, M.3
  • 28
    • 84882800112 scopus 로고    scopus 로고
    • An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge
    • Xu Y, Wang Y, Liu T, et al. An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge. J Am Med Inform Assoc 2013;20:849-58.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 849-858
    • Xu, Y.1    Wang, Y.2    Liu, T.3
  • 29
    • 0345863927 scopus 로고    scopus 로고
    • The unified medical language system (UMLS): integrating biomedical terminology
    • Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res 2004;32(Suppl 1):D267-70.
    • (2004) Nucleic Acids Res , vol.32 , Issue.SUPPL. 1
    • Bodenreider, O.1
  • 32
    • 84882761848 scopus 로고    scopus 로고
    • A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text
    • Roberts K, Rink B, Harabagiu S. A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text. J Am Med Inform Assoc 2013;20:867-75.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 867-875
    • Roberts, K.1    Rink, B.2    Harabagiu, S.3
  • 34
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
    • Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proceedings of the AMIA Symposium. 2001:17-21.
    • (2001) Proceedings of the AMIA Symposium , pp. 17-21
    • Aronson, A.R.1
  • 35
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010;17:507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 36
    • 84882747799 scopus 로고    scopus 로고
    • Combining rules and machine-learning for extraction of temporal expressions and events from clinical narratives
    • (in press)
    • Kovaceviç A, Dehghan A, Filannino M, et al. Combining rules and machine-learning for extraction of temporal expressions and events from clinical narratives. J Am Med Inform Assoc 2013 (in press).
    • (2013) J Am Med Inform Assoc
    • Kovaceviç, A.1    Dehghan, A.2    Filannino, M.3
  • 37
    • 84881183249 scopus 로고    scopus 로고
    • Comprehensive temporal information discovery from discharge summaries: medical events, time, and TLINK identification
    • (in press)
    • Sohn S, Wagholikar K, Li D, et al. Comprehensive temporal information discovery from discharge summaries: medical events, time, and TLINK identification. J Am Med Inform Assoc. 2013 (in press).
    • (2013) J Am Med Inform Assoc
    • Sohn, S.1    Wagholikar, K.2    Li, D.3
  • 39
    • 84882778941 scopus 로고    scopus 로고
    • Rule-Based Methodology to Identify and Classify Temporal Expressions
    • in press)
    • Guillen R. Rule-Based Methodology to Identify and Classify Temporal Expressions. Journal of Biomedical Informatics 2013 (in press).
    • (2013) Journal of Biomedical Informatics
    • Guillen, R.1
  • 40
    • 84882787270 scopus 로고    scopus 로고
    • Timexes and Events Extraction With Global Inference for Clinical Narratives
    • (in press)
    • Prateek J, Dan R. Timexes and Events Extraction With Global Inference for Clinical Narratives. J Biomed Inform 2013 (in press).
    • (2013) J Biomed Inform
    • Prateek, J.1    Dan, R.2
  • 41
    • 84882766470 scopus 로고    scopus 로고
    • Eventual Situations for Timeline Extraction from Clinical Reports
    • Grouin C, Grabar N, Hamon T, et al. Eventual Situations for Timeline Extraction from Clinical Reports. J Am Med Inform Assoc 2013;20:820-7.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 820-827
    • Grouin, C.1    Grabar, N.2    Hamon, T.3
  • 43
    • 84882748440 scopus 로고    scopus 로고
    • A la Recherche du Temps Perdu-extracting temporal relations from medical text in the 2012 i2b2 NLP challenge
    • Cherry C, Zhu X, Martin J, et al. A la Recherche du Temps Perdu-extracting temporal relations from medical text in the 2012 i2b2 NLP challenge. J Am Med Inform Assoc 2013;20:843-8.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 843-848
    • Cherry, C.1    Zhu, X.2    Martin, J.3
  • 44
    • 84897052209 scopus 로고    scopus 로고
    • TEMPTing System: A Hybrid Method of Rule and Machine Learning for Temporal Relation Extraction in Patient Discharge Summaries
    • (in press)
    • Chang Y-C, Wu JC-Y, Chen J-M, et al. TEMPTing System: A Hybrid Method of Rule and Machine Learning for Temporal Relation Extraction in Patient Discharge Summaries. Journal of Biomedical Informatics 2013 (in press).
    • (2013) Journal of Biomedical Informatics
    • Chang, Y.-C.1    Wu, J.C.-Y.2    Chen, J.-M.3
  • 45
    • 84882737650 scopus 로고    scopus 로고
    • Towards Generating Patient's Timeline: Extracting Temporal Relationships from Clinical Notes
    • (in press)
    • Nikfarjam A, Emadzadeh E, Gonzalez G, et al. Towards Generating Patient's Timeline: Extracting Temporal Relationships from Clinical Notes. Journal of Biomedical Informatics 2013 (in press)
    • (2013) Journal of Biomedical Informatics
    • Nikfarjam, A.1    Emadzadeh, E.2    Gonzalez, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.