메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages S67-S77

Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2

Author keywords

CAD; Clinical narratives; Diabetes; Natural language processing

Indexed keywords

AUTOMATION; COMPUTATIONAL LINGUISTICS; COMPUTER AIDED DESIGN; DISEASES; MEDICAL PROBLEMS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84940056554     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.07.001     Document Type: Article
Times cited : (116)

References (31)
  • 1
    • 84977520973 scopus 로고    scopus 로고
    • (last updated 2014)
    • WHO (World Health Organization), Health Topics: Risk Factors. (last updated 2014). http://www.who.int/topics/risk_factors/en/.
    • Health Topics: Risk Factors
  • 4
    • 84940707615 scopus 로고    scopus 로고
    • Annotating risk factors for heart disease in clinical narratives for diabetic patients
    • A. Stubbs, Ö. Uzuner, Annotating risk factors for heart disease in clinical narratives for diabetic patients, J. Biomed. Inform. 58S (2015) S78-S91.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S78-S91
    • Stubbs, A.1    Uzuner, Ö.2
  • 5
    • 80053240828 scopus 로고    scopus 로고
    • Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions
    • Chapman W.W., Nadkarni P.M., Hirschman L., D'Avolio L.W., Savova G.K., Uzuner Ö. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J. Am. Med. Inform. Assoc. 2011, 18(5):540-543.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 540-543
    • Chapman, W.W.1    Nadkarni, P.M.2    Hirschman, L.3    D'Avolio, L.W.4    Savova, G.K.5    Uzuner, Ö.6
  • 8
    • 67649352145 scopus 로고    scopus 로고
    • Recognizing obesity and comorbidities in sparse data
    • Uzuner Ö. Recognizing obesity and comorbidities in sparse data. J. Am. Med. Inform. Assoc. 2009, 16:561-570.
    • (2009) J. Am. Med. Inform. Assoc. , vol.16 , pp. 561-570
    • Uzuner, Ö.1
  • 9
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner Ö., Solti I., Cadag E. Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 2010, 17:514-518.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , pp. 514-518
    • Uzuner, Ö.1    Solti, I.2    Cadag, E.3
  • 10
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • Uzuner Ö., South B.R., Shen S., DuVall S.L. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 2011, 18:552-556.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , pp. 552-556
    • Uzuner, Ö.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 12
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 challenge overview
    • Sun W., Rumshisky A., Uzuner Ö. Evaluating temporal relations in clinical text: 2012 i2b2 challenge overview. J. Am. Med. Assoc. 2013.
    • (2013) J. Am. Med. Assoc.
    • Sun, W.1    Rumshisky, A.2    Uzuner, Ö.3
  • 13
    • 84951026409 scopus 로고    scopus 로고
    • Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus
    • Amber Stubbs, Özlem Uzuner, Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus, J. Biomed. Inform. 58S (2015) S20-S29.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S20-S29
    • Stubbs, A.1    Uzuner, O.2
  • 14
    • 84977561758 scopus 로고    scopus 로고
    • Nancy Ide, James Pustejovsky (Eds.), De-identification of Medical Records through Annotation
    • Springer, forthcoming.
    • A. Stubbs, Ö. Uzuner, in: Nancy Ide, James Pustejovsky (Eds.), De-identification of Medical Records through Annotation. Chapter in Handbook of Linguistic Annotation, Springer, forthcoming.
    • Chapter in Handbook of Linguistic Annotation
    • Stubbs, A.1    Uzuner, O.2
  • 16
    • 84951852380 scopus 로고    scopus 로고
    • Creation of a new longitudinal corpus of clinical narratives
    • V. Kumar, A. Stubbs, S. Shaw, Ö. Uzuner, Creation of a new longitudinal corpus of clinical narratives. J. Biomed. Inform. 58S (2015) S6-S10.
    • (2015) J. Biomed. Inform , vol.58S , pp. S6-S10
    • Kumar, V.1    Stubbs, A.2    Shaw, S.3    Uzuner, Ö.4
  • 18
    • 84977509771 scopus 로고
    • Proceedings of the 4th conference on Message understanding
    • Chinchor, Nancy, The statistical significance of the MUC-4 results, in: Proceedings of the 4th conference on Message understanding, 1992, pp. 30-50.
    • (1992) The statistical significance of the MUC-4 results , pp. 30-50
    • Nancy, C.1
  • 22
    • 84940099418 scopus 로고    scopus 로고
    • Risk factor detection for heart disease by applying text analytics in electronic medical records
    • Manabu Torii, Jung-wei Fan, Wei-li Yang, Theodore Lee, Matthew T. Wiley, Daniel Zisook, Yang Huang, Risk factor detection for heart disease by applying text analytics in electronic medical records. J. Biomed. Inform. 58S (2015) S164-S170.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S164-S170
    • Torii, M.1    Fan, J.2    Yang, W.3    Lee, T.4    Wiley, M.T.5    Zisook, D.6    Huang, Y.7
  • 23
    • 84937854995 scopus 로고    scopus 로고
    • Agile text mining for the 2014 i2b2/UTHealth cardiac risk factors challenge
    • James Cormack, Chinmoy Nath, David Milward, Kalpana Raja, Siddhartha R. Jonnalagadda, Agile text mining for the 2014 i2b2/UTHealth cardiac risk factors challenge. J. Biomed. Inform. 58S (2015) S120-S1270.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S120-S1270
    • Cormack, J.1    Nath, C.2    Milward, D.3    Raja, K.4    Jonnalagadda, S.R.5
  • 24
    • 84936803802 scopus 로고    scopus 로고
    • The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs
    • Kirk Roberts, Sonya E. Shooshan, Laritza Rodriguez, Swapna Abhyankar, Halil Kilicoglu, Dina Demner-Fushman, The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs, J. Biomed. Inform. 58S (2015) S111-S119.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S111-S119
    • Roberts, K.1    Shooshan, S.E.2    Rodriguez, L.3    Abhyankar, S.4    Kilicoglu, H.5    Demner-Fushman, D.6
  • 25
    • 70349470770 scopus 로고    scopus 로고
    • ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
    • Harkema H., Dowling J.N., Thornblade T., Chapman W.W. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J. Biomed. Inform. 2009, 42(5):839-851.
    • (2009) J. Biomed. Inform. , vol.42 , Issue.5 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3    Chapman, W.W.4
  • 26
    • 84945319813 scopus 로고    scopus 로고
    • Comparison of UMLS terminologies to identify risk of heart disease using clinical notes
    • Chaitanya Shivade, Pranav Malewadkar, Eric Fosler-Lussier, Albert M. Lai, Comparison of UMLS terminologies to identify risk of heart disease using clinical notes, J. Biomed. Inform. 58S (2015) S211-S218.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S211-S218
    • Shivade, C.1    Malewadkar, P.2    Fosler-Lussier, E.3    Lai, A.M.4
  • 27
    • 84951776890 scopus 로고    scopus 로고
    • A Context-aware approach for progression tracking of medical concepts in electronic medical records
    • Nai-Wen Chang, Hong-Jie Dai, Jitendra Jonnagaddala, Chih-Wei Chen, Wen-Lian Hsu, A Context-aware approach for progression tracking of medical concepts in electronic medical records. J. Biomed. Inform. 58S (2015) S150-S157.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S150-S157
    • Chang, N.-W.1    Dai, H.-J.2    Jonnagaddala, J.3    Chen, C.-W.4    Hsu, W.-L.5
  • 28
    • 84939817187 scopus 로고    scopus 로고
    • Using local lexicalized rules for identification of heart disease risk factors in clinical notes
    • George Karystianis, Azad Dehghan, Aleksandar Kovačević, John A. Keane, Goran Nenadic. Using local lexicalized rules for identification of heart disease risk factors in clinical notes. J. Biomed. Inform. 58S (2015) S183-S188.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S183-S188
    • Karystianis, G.1    Dehghan, A.2    Kovačević, A.3    Keane, J.A.4    Nenadic, G.5
  • 29
    • 84945353785 scopus 로고    scopus 로고
    • A hybrid model for automatic identification of risk factors for heart disease
    • Hui Yang, Jonathan Garibaldi, A hybrid model for automatic identification of risk factors for heart disease. J. Biomed. Inform. 58S (2015) S171-S182.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S171-S182
    • Yang, H.1    Garibaldi, J.2
  • 30
    • 84940755209 scopus 로고    scopus 로고
    • Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes
    • Abdulrahman Khalifa, Stéphane M. Meystre, Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes. J. Biomed. Inform. 58S (2015) S128-S132.
    • (2015) J. Biomed. Inform. , vol.58S , pp. S128-S132
    • Khalifa, A.1    Meystre, S.M.2
  • 31
    • 78149476739 scopus 로고    scopus 로고
    • Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents
    • Meystre S.M., Thibault J., Shen S., Hurdle J.F., South B.R. Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. J. Am. Med. Inform. Assoc.: JAMIA 2010, 17(5):559-562. 10.1136/jamia.2010.004028.
    • (2010) J. Am. Med. Inform. Assoc.: JAMIA , vol.17 , Issue.5 , pp. 559-562
    • Meystre, S.M.1    Thibault, J.2    Shen, S.3    Hurdle, J.F.4    South, B.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.