메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages 288-291

Pharmacovigilance through the development of text mining and natural language processing techniques

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; CLINICAL PROTOCOL; DATA EXTRACTION; DATA MINING; DRUG MANUFACTURE; DRUG SAFETY; DRUG SURVEILLANCE PROGRAM; EDITORIAL; HEALTH CARE COST; HOSPITAL ADMISSION; HUMAN; NATURAL LANGUAGE PROCESSING; PATIENT SAFETY; PRESCRIPTION; PRIORITY JOURNAL; RESOURCE ALLOCATION; SOCIAL MEDIA;

EID: 84949322456     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.11.001     Document Type: Editorial
Times cited : (22)

References (23)
  • 1
    • 0034619028 scopus 로고    scopus 로고
    • Adverse drug reactions: definitions, diagnosis, and management
    • Edwards I.R., Aronson J.K. Adverse drug reactions: definitions, diagnosis, and management. The Lancet 2000, 356(9237):1255-1259.
    • (2000) The Lancet , vol.356 , Issue.9237 , pp. 1255-1259
    • Edwards, I.R.1    Aronson, J.K.2
  • 2
    • 84949319738 scopus 로고    scopus 로고
    • US Department of Health and Human Services, Office of Disease Prevention and Health Promotion, National Action Plan for Adverse Drug Event Prevention, Washington, DC
    • US Department of Health and Human Services, Office of Disease Prevention and Health Promotion, National Action Plan for Adverse Drug Event Prevention, Washington, DC, 2014.
    • (2014)
  • 3
    • 34247477642 scopus 로고    scopus 로고
    • Drug safety reform at the FDA-pendulum swing or systematic improvement?
    • McClellan M. Drug safety reform at the FDA-pendulum swing or systematic improvement?. N. Engl. J. Med. 2007, 356(17):1700-1702.
    • (2007) N. Engl. J. Med. , vol.356 , Issue.17 , pp. 1700-1702
    • McClellan, M.1
  • 8
    • 84938582207 scopus 로고    scopus 로고
    • On the creation of a clinical gold standard corpus in Spanish: mining adverse drug reactions
    • Oronoz M., Gojenola K., Pérez A., de Ilarraza A.D., Casillas A. On the creation of a clinical gold standard corpus in Spanish: mining adverse drug reactions. J. Biomed. Inform. 2015, 56:318-332.
    • (2015) J. Biomed. Inform. , vol.56 , pp. 318-332
    • Oronoz, M.1    Gojenola, K.2    Pérez, A.3    de Ilarraza, A.D.4    Casillas, A.5
  • 9
    • 84949323170 scopus 로고    scopus 로고
    • University of Utah, Biomedical Informatics Department. <> (cited 26.10.15).
    • Open Access, Collaborative Consumer Health Vocabulary Initiative [Internet], University of Utah, Biomedical Informatics Department. <> (cited 26.10.15). http://consumerhealthvocab.org/.
  • 12
    • 84927962522 scopus 로고    scopus 로고
    • Filtering big data from social media-building an early warning system for adverse drug reactions
    • Yang M., Kiang M., Shang W. Filtering big data from social media-building an early warning system for adverse drug reactions. J. Biomed. Inform. 2015, 54:230-240.
    • (2015) J. Biomed. Inform. , vol.54 , pp. 230-240
    • Yang, M.1    Kiang, M.2    Shang, W.3
  • 13
    • 84947918869 scopus 로고    scopus 로고
    • Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug effects
    • Alvaro N., Conway M., Doan S., Lofi C., Overington J., Collier N. Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug effects. J. Biomed. Inform. 2015, 58:280-287.
    • (2015) J. Biomed. Inform. , vol.58 , pp. 280-287
    • Alvaro, N.1    Conway, M.2    Doan, S.3    Lofi, C.4    Overington, J.5    Collier, N.6
  • 14
    • 84947939048 scopus 로고    scopus 로고
    • A research framework for pharmacovigilance in health social media: identification and evaluation of patient adverse drug event reports
    • Liu X., Chen H. A research framework for pharmacovigilance in health social media: identification and evaluation of patient adverse drug event reports. J. Biomed. Inform. 2015, 58:268-279.
    • (2015) J. Biomed. Inform. , vol.58 , pp. 268-279
    • Liu, X.1    Chen, H.2
  • 16
    • 84930713528 scopus 로고    scopus 로고
    • Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles
    • Xu R., Wang Q. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles. J. Biomed. Inform. 2015, 55:64-72.
    • (2015) J. Biomed. Inform. , vol.55 , pp. 64-72
    • Xu, R.1    Wang, Q.2
  • 17
    • 84930689846 scopus 로고    scopus 로고
    • Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach
    • Kim S., Liu H., Yeganova L., Wilbur W.J. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach. J. Biomed. Inform. 2015, 55:23-30.
    • (2015) J. Biomed. Inform. , vol.55 , pp. 23-30
    • Kim, S.1    Liu, H.2    Yeganova, L.3    Wilbur, W.J.4
  • 18
    • 84883756903 scopus 로고    scopus 로고
    • The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions
    • Herrero-Zazo M., Segura-Bedmar I., Martínez P., Declerck T. The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform. 2013, 46(5):914-920.
    • (2013) J. Biomed. Inform. , vol.46 , Issue.5 , pp. 914-920
    • Herrero-Zazo, M.1    Segura-Bedmar, I.2    Martínez, P.3    Declerck, T.4
  • 19
    • 84947916834 scopus 로고    scopus 로고
    • Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification
    • Abacha A.B., Chowdhury M.F.M., Karanasiou A., Mrabet Y., Lavelli A., Zweigenbaum P. Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification. J. Biomed. Inform. 2015, 58:122-132.
    • (2015) J. Biomed. Inform. , vol.58 , pp. 122-132
    • Abacha, A.B.1    Chowdhury, M.F.M.2    Karanasiou, A.3    Mrabet, Y.4    Lavelli, A.5    Zweigenbaum, P.6
  • 20
    • 84938559866 scopus 로고    scopus 로고
    • Twitter KH networks in action: advancing biomedical literature for drug search
    • Hamed A.A., Wu X., Erickson R., Fandy T. Twitter KH networks in action: advancing biomedical literature for drug search. J. Biomed. Inform. 2015, 56:157-168.
    • (2015) J. Biomed. Inform. , vol.56 , pp. 157-168
    • Hamed, A.A.1    Wu, X.2    Erickson, R.3    Fandy, T.4
  • 21
    • 84949322205 scopus 로고    scopus 로고
    • Using linked data for polarity classification of patients' experiences
    • Noferesti S., Shamsfard M. Using linked data for polarity classification of patients' experiences. J. Biomed. Inform. 2015, 57:6-19.
    • (2015) J. Biomed. Inform. , vol.57 , pp. 6-19
    • Noferesti, S.1    Shamsfard, M.2
  • 23
    • 84940202344 scopus 로고    scopus 로고
    • DINTO: using OWL ontologies and SWRL rules to infer drug-drug interactions and their mechanisms
    • Herrero-Zazo M., Segura-Bedmar I., Hastings J., Martínez P. DINTO: using OWL ontologies and SWRL rules to infer drug-drug interactions and their mechanisms. J. Chem. Inf. Model. 2015, 55(8):1698-1707.
    • (2015) J. Chem. Inf. Model. , vol.55 , Issue.8 , pp. 1698-1707
    • Herrero-Zazo, M.1    Segura-Bedmar, I.2    Hastings, J.3    Martínez, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.