메뉴 건너뛰기




Volumn 82, Issue , 2017, Pages 128-150

An up-to-date comparison of state-of-the-art classification algorithms

Author keywords

Classification benchmarking; Classifier comparison; Classifier evaluation

Indexed keywords

DECISION TREES; EFFICIENCY; FORECASTING; LEARNING SYSTEMS; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 85017304883     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2017.04.003     Document Type: Article
Times cited : (362)

References (86)
  • 3
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman, N.S., An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46:3 (1992), 175–185.
    • (1992) The American Statistician , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 4
    • 79952437887 scopus 로고    scopus 로고
    • Empirical study of feature selection methods based on individual feature evaluation for classification problems
    • Arauzo-Azofra, A., Aznarte, J.L., Benitez, J.M., Empirical study of feature selection methods based on individual feature evaluation for classification problems. Expert Systems with Applications 38:7 (2011), 8170–8177.
    • (2011) Expert Systems with Applications , vol.38 , Issue.7 , pp. 8170-8177
    • Arauzo-Azofra, A.1    Aznarte, J.L.2    Benitez, J.M.3
  • 9
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 10
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley, A.P., The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30:7 (1997), 1145–1159.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 12
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown, I., Mues, C., An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications 39:3 (2012), 3446–3453.
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 13
    • 84937275232 scopus 로고    scopus 로고
    • Assessing agreement on classification tasks: The kappa statistic
    • Carletta, J., Assessing agreement on classification tasks: The kappa statistic. Computational Linguistics 22:2 (1996), 249–254.
    • (1996) Computational Linguistics , vol.22 , Issue.2 , pp. 249-254
    • Carletta, J.1
  • 16
    • 80053460837 scopus 로고    scopus 로고
    • Yahoo! learning to rank challenge overview.
    • O. Chapelle Y. Chang T.-Y. Liu JMLR.org
    • Chapelle, O., Chang, Y., Yahoo! learning to rank challenge overview. Chapelle, O., Chang, Y., Liu, T.-Y., (eds.) Yahoo! learning to rank challenge JMLR Proceedings, 14, 2011, JMLR.org, 1–24.
    • (2011) Yahoo! learning to rank challenge, JMLR Proceedings , vol.14 , pp. 1-24
    • Chapelle, O.1    Chang, Y.2
  • 18
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., Vapnik, V., Support vector networks. Machine Learning 20 (1995), 273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0004086493 scopus 로고    scopus 로고
    • Applied nonparametric statistics
    • 2nd ed. Cengage Learning
    • Daniel, W.W., Applied nonparametric statistics. 2nd ed., 2000, Cengage Learning.
    • (2000)
    • Daniel, W.W.1
  • 22
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J., Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7 (2006), 1–30.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 25
    • 84861604521 scopus 로고
    • Multiple comparisons using rank sums
    • Dunn, O.J., Multiple comparisons using rank sums. Technometrics 6:3 (1964), 241–252.
    • (1964) Technometrics , vol.6 , Issue.3 , pp. 241-252
    • Dunn, O.J.1
  • 29
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman, M., The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32 (1937), 675–701.
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 30
    • 58149287952 scopus 로고    scopus 로고
    • An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
    • Garcia, S., Herrera, F., An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research 9 (2009), 2677–2694.
    • (2009) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 31
    • 0041865973 scopus 로고    scopus 로고
    • Applied data mining: Statistical methods for business and industry
    • John Wiley & Sons
    • Giudici, P., Applied data mining: Statistical methods for business and industry. 2005, John Wiley & Sons.
    • (2005)
    • Giudici, P.1
  • 34
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the roc curve
    • Hand, D.J., Measuring classifier performance: A coherent alternative to the area under the roc curve. Machine Learning 77:1 (2009), 103–123.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 35
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • Hand, D.J., Till, R.J., A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning 45:2 (2001), 171–186.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 37
    • 84869160181 scopus 로고    scopus 로고
    • A unified view of performance metrics: Translating threshold choice into expected classification loss
    • Hernández-Orallo, J., Flach, P., Ferri, C., A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research 13:Oct (2012), 2813–2869.
    • (2012) Journal of Machine Learning Research , vol.13 , Issue.Oct , pp. 2813-2869
    • Hernández-Orallo, J.1    Flach, P.2    Ferri, C.3
  • 38
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Computation 18:7 (2006), 1527–1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 39
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Department of Computer Science, National Taiwan University
    • Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. A practical guide to support vector classification. Technical Report, 2003, Department of Computer Science, National Taiwan University.
    • (2003) Technical Report
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 40
    • 84869422419 scopus 로고    scopus 로고
    • A comparative study of classification methods for microarray data analysis
    • P. Christen P.J. Kennedy J. Li S.J. Simoff G.J. Williams Australian Computer Society
    • Hu, H., Li, J., Plank, A.W., Wang, H., Daggard, G., A comparative study of classification methods for microarray data analysis. Christen, P., Kennedy, P.J., Li, J., Simoff, S.J., Williams, G.J., (eds.) AusDM, 61, 2006, Australian Computer Society, 33–37.
    • (2006) AusDM , vol.61 , pp. 33-37
    • Hu, H.1    Li, J.2    Plank, A.W.3    Wang, H.4    Daggard, G.5
  • 42
    • 84937837651 scopus 로고    scopus 로고
    • An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes
    • Jones, S., Johnstone, D., Wilson, R., An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking & Finance 56:C (2015), 72–85.
    • (2015) Journal of Banking & Finance , vol.56 , Issue.100 , pp. 72-85
    • Jones, S.1    Johnstone, D.2    Wilson, R.3
  • 43
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • Keerthi, S.S., Lin, C.-J., Asymptotic behaviors of support vector machines with gaussian kernel. Neural Computation 15:7 (2003), 1667–1689.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 44
    • 48649089002 scopus 로고    scopus 로고
    • An empirical study of learning from imbalanced data using random forest.
    • IEEE Computer Society
    • Khoshgoftaar, T.M., Golawala, M., Hulse, J.V., An empirical study of learning from imbalanced data using random forest. ICTAI (2), 2007, IEEE Computer Society, 310–317.
    • (2007) ICTAI (2) , pp. 310-317
    • Khoshgoftaar, T.M.1    Golawala, M.2    Hulse, J.V.3
  • 45
    • 0029306995 scopus 로고
    • Statlog: Comparison of classification algorithms on large real-world problems
    • King, R.D., Feng, C., Sutherland, A., Statlog: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence 9 (1995), 289–333.
    • (1995) Applied Artificial Intelligence , vol.9 , pp. 289-333
    • King, R.D.1    Feng, C.2    Sutherland, A.3
  • 46
    • 0025803268 scopus 로고
    • Information-based evaluation criterion for classifier's performance
    • Kononenko, I., Bratko, I., Information-based evaluation criterion for classifier's performance. Machine Learning 6:1 (1991), 67–80.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 67-80
    • Kononenko, I.1    Bratko, I.2
  • 48
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • Kuncheva, L.I., Switching between selection and fusion in combining classifiers: An experiment. IEEE Transactions on Systems, Man, and Cybernetics, Part B 32:2 (2002), 146–156.
    • (2002) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 49
    • 77952293118 scopus 로고    scopus 로고
    • Classifier ensembles for fmri data analysis: An experiment
    • Kuncheva, L.I., Rodríguez, J.J., Classifier ensembles for fmri data analysis: An experiment. Magnetic Resonance Imaging 28:4 (2010), 583–593.
    • (2010) Magnetic Resonance Imaging , vol.28 , Issue.4 , pp. 583-593
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 50
    • 34447298905 scopus 로고    scopus 로고
    • Approximating the multiclass roc by pairwise analysis
    • Landgrebe, T.C.W., Duin, R.P.W., Approximating the multiclass roc by pairwise analysis. Pattern Recognition Letters 28:13 (2007), 1747–1758.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1747-1758
    • Landgrebe, T.C.W.1    Duin, R.P.W.2
  • 51
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie, S., Van Houwelingen, J.C., Ridge estimators in logistic regression. Applied Statistics 41:1 (1992), 191–201.
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 52
    • 84937523151 scopus 로고    scopus 로고
    • Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
    • Lessmann, S., Baesens, B., Seow, H.-V., Thomas, L.C., Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research 247:1 (2015), 124–136.
    • (2015) European Journal of Operational Research , vol.247 , Issue.1 , pp. 124-136
    • Lessmann, S.1    Baesens, B.2    Seow, H.-V.3    Thomas, L.C.4
  • 53
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li, T., Zhang, C., Ogihara, M., A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20 (2004), 2429–2437.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 54
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms.
    • Lim, T.-S., Loh, W.-Y., Shih, Y.-S., A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning 40:3 (2000), 203–228.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 55
    • 84872509836 scopus 로고    scopus 로고
    • A study on sigmoid kernels for svm and the training of non-psd kernels by smo-type methods
    • submitted to
    • Lin, H.-T., Lin, C.-J., A study on sigmoid kernels for svm and the training of non-psd kernels by smo-type methods. Neural Computation, 2003, 1–32 submitted to.
    • (2003) Neural Computation , pp. 1-32
    • Lin, H.-T.1    Lin, C.-J.2
  • 57
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering.
    • Liu, H., Yu, L., Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17 (2005), 491–502.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 58
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu, Y., A comparative study on feature selection methods for drug discovery. Journal of Chemical Information and Modeling 44:5 (2004), 1823–1828.
    • (2004) Journal of Chemical Information and Modeling , vol.44 , Issue.5 , pp. 1823-1828
    • Liu, Y.1
  • 59
    • 26944498248 scopus 로고    scopus 로고
    • Comparison of extreme learning machine with support vector machine for text classification
    • M. Ali F. Esposito Springer
    • Liu, Y., Loh, H.T., Tor, S.B., Comparison of extreme learning machine with support vector machine for text classification. Ali, M., Esposito, F., (eds.) IEA/AIEaie Lecture Notes in Computer Science, 3533, 2005, Springer, 390–399.
    • (2005) IEA/AIEaie, Lecture Notes in Computer Science , vol.3533 , pp. 390-399
    • Liu, Y.1    Loh, H.T.2    Tor, S.B.3
  • 61
    • 84891781761 scopus 로고    scopus 로고
    • Towards uci+: A mindful repository design.
    • Macia, N., Bernado-Mansilla, E., Towards uci+: A mindful repository design. Information Science 261 (2014), 237–262.
    • (2014) Information Science , vol.261 , pp. 237-262
    • Macia, N.1    Bernado-Mansilla, E.2
  • 63
    • 77953934865 scopus 로고    scopus 로고
    • High performance set of pseaac and sequence based descriptors for protein classification
    • Nanni, L., Brahnam, S., Lumini, A., High performance set of pseaac and sequence based descriptors for protein classification. Journal of Theoretical Biology 266:1 (2010), 1–10.
    • (2010) Journal of Theoretical Biology , vol.266 , Issue.1 , pp. 1-10
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 64
  • 65
    • 84926525100 scopus 로고    scopus 로고
    • Coupling different methods for overcoming the class imbalance problem
    • Nanni, L., Fantozzi, C., Lazzarini, N., Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158:C (2015), 48–61.
    • (2015) Neurocomputing , vol.158 , Issue.100 , pp. 48-61
    • Nanni, L.1    Fantozzi, C.2    Lazzarini, N.3
  • 66
    • 56349094668 scopus 로고    scopus 로고
    • Application of data mining techniques in customer relationship management: A literature review and classification
    • Ngai, E., Xiu, L., Chau, D., Application of data mining techniques in customer relationship management: A literature review and classification. Expert Systems with Applications 36:2, Part 2 (2009), 2592–2602.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2, Part 2 , pp. 2592-2602
    • Ngai, E.1    Xiu, L.2    Chau, D.3
  • 67
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M., Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26:1 (2005), 217–222.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 69
    • 0003500248 scopus 로고
    • C4.5: Programs for machine learning
    • Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • Quinlan, J.R., C4.5: Programs for machine learning. 1993, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    • (1993)
    • Quinlan, J.R.1
  • 70
    • 0004217877 scopus 로고
    • Information retrieval
    • 2nd Butterworth-Heinemann
    • Rijsbergen, C.J.V., Information retrieval. 2nd, 1979, Butterworth-Heinemann.
    • (1979)
    • Rijsbergen, C.J.V.1
  • 72
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I.n., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23:19 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.N.2    Larrañaga, P.3
  • 73
    • 0003854151 scopus 로고
    • Exploratory data analysis
    • Addison-Wesley
    • Tukey, J.W., Exploratory data analysis. 1977, Addison-Wesley.
    • (1977)
    • Tukey, J.W.1
  • 74
    • 84982681770 scopus 로고    scopus 로고
    • Catools: Tools: Moving window statistics, gif, base64, roc auc, etc
    • R package version, 1.
    • Tuszynski, J. (2008). Catools: Tools: Moving window statistics, gif, base64, roc auc, etc. R package version, 1.
    • (2008)
    • Tuszynski, J.1
  • 76
    • 84862023028 scopus 로고    scopus 로고
    • Experiment databases - a new way to share, organize and learn from experiments.
    • Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G., Experiment databases - a new way to share, organize and learn from experiments. Machine Learning 87:2 (2012), 127–158.
    • (2012) Machine Learning , vol.87 , Issue.2 , pp. 127-158
    • Vanschoren, J.1    Blockeel, H.2    Pfahringer, B.3    Holmes, G.4
  • 78
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F., Individual comparisons by ranking methods. Biometrics Bulletin 1:6 (1945), 80–83.
    • (1945) Biometrics Bulletin , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 79
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert, D.H., The lack of a priori distinctions between learning algorithms. Neural Computing 8:7 (1996), 1341–1390.
    • (1996) Neural Computing , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 82
    • 85013170820 scopus 로고    scopus 로고
    • A boosted decision tree approach using bayesian hyper-parameter optimization for credit scoring
    • Xia, Y., Liu, C., Li, Y., Liu, N., A boosted decision tree approach using bayesian hyper-parameter optimization for credit scoring. Expert Systems with Applications 78 (2017), 225–241.
    • (2017) Expert Systems with Applications , vol.78 , pp. 225-241
    • Xia, Y.1    Liu, C.2    Li, Y.3    Liu, N.4
  • 83
    • 74549138522 scopus 로고    scopus 로고
    • Stochastic gradient boosted distributed decision trees.
    • D.W.-L. Cheung I.-Y. Song W.W. Chu X. Hu J.J. Lin ACM
    • Ye, J., Chow, J.-H., Chen, J., Zheng, Z., Stochastic gradient boosted distributed decision trees. Cheung, D.W.-L., Song, I.-Y., Chu, W.W., Hu, X., Lin, J.J., (eds.) CIKM, 2009, ACM, 2061–2064.
    • (2009) CIKM , pp. 2061-2064
    • Ye, J.1    Chow, J.-H.2    Chen, J.3    Zheng, Z.4
  • 85
    • 0007842796 scopus 로고
    • A benchmark for classifier learning
    • University of Sydney
    • Zheng, Z., A benchmark for classifier learning. Technical Report, 1993, University of Sydney.
    • (1993) Technical Report
    • Zheng, Z.1
  • 86
    • 9444231677 scopus 로고    scopus 로고
    • Error detection and impact-sensitive instance ranking in noisy datasets
    • Zhu, X., Wu, X., Yang, Y., Error detection and impact-sensitive instance ranking in noisy datasets. AAAI, 2004, 378–384.
    • (2004) AAAI , pp. 378-384
    • Zhu, X.1    Wu, X.2    Yang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.