메뉴 건너뛰기




Volumn 7301 LNAI, Issue PART 1, 2012, Pages 122-134

Building decision trees for the multi-class imbalance problem

Author keywords

[No Author keywords available]

Indexed keywords

CLASS IMBALANCE PROBLEMS; DATA SETS; DECOMPOSITION TECHNIQUE; HELLINGER DISTANCE; IMBALANCE PROBLEM; IMBALANCED DATA-SETS; MISCLASSIFICATIONS; MULTI-CLASS; REAL-WORLD APPLICATION; RELATIVE FREQUENCIES; SPLITTING CRITERION;

EID: 84861442505     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-30217-6_11     Document Type: Conference Paper
Times cited : (60)

References (21)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 2
    • 0346586663 scopus 로고    scopus 로고
    • Smote: Synthetic minority over-sampling technique
    • Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. JAIR 16, 321-357 (2002)
    • (2002) JAIR , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3    Kegelmeyer, W.P.4
  • 4
    • 56049126929 scopus 로고    scopus 로고
    • Learning Decision Trees for Unbalanced Data
    • Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. Springer, Heidelberg
    • Cieslak, D.A., Chawla, N.V.: Learning Decision Trees for Unbalanced Data. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 241-256. Springer, Heidelberg (2008)
    • (2008) LNCS (LNAI) , vol.5211 , pp. 241-256
    • Cieslak, D.A.1    Chawla, N.V.2
  • 5
    • 67049119859 scopus 로고    scopus 로고
    • Start globally, optimize locally, predict globally: Improving performance on imbalanced data
    • Cieslak, D.A., Chawla, N.V.: Start globally, optimize locally, predict globally: Improving performance on imbalanced data. In: ICDM, pp. 143-152 (2008)
    • (2008) ICDM , pp. 143-152
    • Cieslak, D.A.1    Chawla, N.V.2
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 30 (2006)
    • (2006) JMLR , vol.7 , pp. 30
    • Demšar, J.1
  • 7
    • 0000298776 scopus 로고
    • Error-correcting output codes: A general method for improving multiclass inductive learning programs
    • Dietterich, T., Bakiri, G.: Error-correcting output codes: A general method for improving multiclass inductive learning programs. In: AAAI, pp. 395-395 (1994)
    • (1994) AAAI , pp. 395-395
    • Dietterich, T.1    Bakiri, G.2
  • 8
    • 0344324689 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In: KDD, pp. 155-164 (1999)
    • (1999) KDD , pp. 155-164
    • Domingos, P.1
  • 9
    • 84983110889 scopus 로고
    • A Desicion-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Vitányi, P.M.B. (ed.) EuroCOLT 1995. Springer, Heidelberg
    • Freund, Y., Schapire, R.: A Desicion-Theoretic Generalization of On-Line Learning and an Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23-37. Springer, Heidelberg (1995)
    • (1995) LNCS , vol.904 , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 11
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: NIPS, pp. 231-238 (1995)
    • (1995) NIPS , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 12
    • 84861434974 scopus 로고    scopus 로고
    • Learning when data sets are imbalanced and when costs are unequal and unknown
    • Maloof, M.A.: Learning when data sets are imbalanced and when costs are unequal and unknown. In: ICML WLIDS (2003)
    • (2003) ICML WLIDS
    • Maloof, M.A.1
  • 13
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52(3), 199-215 (2003)
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 14
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81-106 (1986)
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 15
    • 79951756007 scopus 로고    scopus 로고
    • Consequences of Variability in Classifier Performance Estimates
    • Raeder, T., Hoens, T., Chawla, N.: Consequences of Variability in Classifier Performance Estimates. In: ICDM, pp. 421-430 (2010)
    • (2010) ICDM , pp. 421-430
    • Raeder, T.1    Hoens, T.2    Chawla, N.3
  • 16
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin, R., Klautau, A.: In defense of one-vs-all classification. JMLR 5, 101-141 (2004)
    • (2004) JMLR , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 17
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting, K.M.: An instance-weighting method to induce cost-sensitive trees. TKDE 14(3), 659-665 (2002)
    • (2002) TKDE , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 18
    • 0037884936 scopus 로고    scopus 로고
    • Types of cost in inductive concept learning
    • Turney, P.D.: Types of cost in inductive concept learning. In: ICML, pp. 15-21 (2000)
    • (2000) ICML , pp. 15-21
    • Turney, P.D.1
  • 20
    • 33750737002 scopus 로고    scopus 로고
    • On multi-class cost-sensitive learning
    • Zhou, Z.-H., Liu, X.-Y.: On multi-class cost-sensitive learning. In: AAAI, pp. 567-572 (2006)
    • (2006) AAAI , pp. 567-572
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 21
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.-H., Liu, X.-Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. TKDE 18(1), 63-77 (2006)
    • (2006) TKDE , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.