메뉴 건너뛰기




Volumn 25, Issue , 2018, Pages 152-160

Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model

Author keywords

Association impact scale; Correlation analysis; Feature reduction; Intrusion detection

Indexed keywords

BINS; FEATURE EXTRACTION; INFORMATION FILTERING; MERCURY (METAL); PROBABILITY DISTRIBUTIONS; STATISTICAL TESTS;

EID: 85016025969     PISSN: 18777503     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jocs.2017.03.006     Document Type: Article
Times cited : (507)

References (43)
  • 3
    • 84938927708 scopus 로고    scopus 로고
    • Ravindra c Thool, Intrusion detection system using bagging with partial decision tree base classifier, in: Proceeding of International Conference on Advanced in Computing, Communication and Control, ICAC3(15
    • Procedia Computer Science, Elsevier
    • D.P. Gaikward, Ravindra c Thool, Intrusion detection system using bagging with partial decision tree base classifier, in: Proceeding of International Conference on Advanced in Computing, Communication and Control, ICAC3(15, in: Procedia Computer Science, vol. 49, Elsevier, 2015, pp. 92–98.
    • (2015) , vol.49 , pp. 92-98
    • Gaikward, D.P.1
  • 4
    • 84930416811 scopus 로고    scopus 로고
    • Genetic algorithm with variable length chromosomes for network intrusion detection
    • Pawar, Sunil Nilkanth, Sadashivrao Bichkar, Rajankumar, Genetic algorithm with variable length chromosomes for network intrusion detection. Int. J. Autom. Comput. 12:3 (2015), 337–342.
    • (2015) Int. J. Autom. Comput. , vol.12 , Issue.3 , pp. 337-342
    • Pawar, S.N.1    Sadashivrao Bichkar, R.2
  • 6
    • 85045697965 scopus 로고
    • Next- generation Intrusion Detection Expert System (NIDES): A summary, SRI Int., no. May, 1995
    • D. Anderson, T. Frivold, A. Valdes, Next- generation Intrusion Detection Expert System (NIDES): A summary, SRI Int., no. May 1995, p. 47, 1995.
    • (1995) , pp. 47
    • Anderson, D.1    Frivold, T.2    Valdes, A.3
  • 7
    • 85045697841 scopus 로고    scopus 로고
    • DARPA Intrusion Detection Data Sets. [Online]. Available: [accessed: 7 April 2016].
    • M. Lincoln Laboratory, DARPA Intrusion Detection Data Sets. [Online]. Available: https://www.ll.mit.edu/ideval/data/. [accessed: 7 April 2016].
    • Lincoln Laboratory, M.1
  • 8
    • 85019691440 scopus 로고    scopus 로고
    • Testing Intrusion detection systems: a [33] critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • McHugh, J., Testing Intrusion detection systems: a [33] critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur. 3:4 (2000), 262–294.
    • (2000) ACM Trans. Inf. Syst. Secur. , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 9
    • 84925291073 scopus 로고    scopus 로고
    • A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection
    • Kuang, Fangjun, Zhang, Siyang, Jin, Zhong, Xu, Weihong, A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection. Soft Comput. 19 (2015), 1187–1199.
    • (2015) Soft Comput. , vol.19 , pp. 1187-1199
    • Kuang, F.1    Zhang, S.2    Jin, Z.3    Xu, W.4
  • 10
    • 84944064975 scopus 로고    scopus 로고
    • Application of artificial bee colony for intrusion detection systems
    • Aldwairi, M., Khamayseh, Y., Al-Masri, M., Application of artificial bee colony for intrusion detection systems. Sec. Commun. Netw. 8:16 (2015), 2730–2740.
    • (2015) Sec. Commun. Netw. , vol.8 , Issue.16 , pp. 2730-2740
    • Aldwairi, M.1    Khamayseh, Y.2    Al-Masri, M.3
  • 11
    • 84900856383 scopus 로고    scopus 로고
    • Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components
    • Ahmad, I., Hussain, M., Alghamdi, A., Alelaiwi, A., Enhancing SVM performance in intrusion detection using optimal feature subset selection based on genetic principal components. Neural Comput. 24 (2014), 1671–1682.
    • (2014) Neural Comput. , vol.24 , pp. 1671-1682
    • Ahmad, I.1    Hussain, M.2    Alghamdi, A.3    Alelaiwi, A.4
  • 12
    • 84894903848 scopus 로고    scopus 로고
    • A distance sum-based hybrid method for intrusion detection
    • Guo, Chun, Zhou, Yajian, Ping, Yuan, Zhang, Zhongkun, Liu, Guole, Yang, Yixian, A distance sum-based hybrid method for intrusion detection. Appl. Intell. 40 (2014), 178–188.
    • (2014) Appl. Intell. , vol.40 , pp. 178-188
    • Guo, C.1    Zhou, Y.2    Ping, Y.3    Zhang, Z.4    Liu, G.5    Yang, Y.6
  • 13
    • 84874149164 scopus 로고    scopus 로고
    • Intrusion detection using naive bayes classifier with feature reduction, in: proceedings in 2nd International Conference on Computer, Communication, Control and Information Technology, C3IT-2012
    • (Elsevier)
    • Mukherjee, Saurabh, Sharma, Neelam, Intrusion detection using naive bayes classifier with feature reduction, in: proceedings in 2nd International Conference on Computer, Communication, Control and Information Technology, C3IT-2012. Procedia Technol. 4 (2012), 119–128 (Elsevier).
    • (2012) Procedia Technol. , vol.4 , pp. 119-128
    • Mukherjee, S.1    Sharma, N.2
  • 15
    • 85045702837 scopus 로고
    • Defending a Computer System Using Autonomous Agents, Technical Report 95-022
    • COAST Laboratory—Purdue University
    • Crosbie, M., Spafford, G., Defending a Computer System Using Autonomous Agents, Technical Report 95-022., 1994, COAST Laboratory—Purdue University.
    • (1994)
    • Crosbie, M.1    Spafford, G.2
  • 17
    • 84906097809 scopus 로고    scopus 로고
    • MAIS-IDS: a distributed intrusion detection system using multi-agent AIS approach
    • Afzali, N., Azmi, R., MAIS-IDS: a distributed intrusion detection system using multi-agent AIS approach. Eng. Appl. Artif. Intell. 35 (2014), 286–298.
    • (2014) Eng. Appl. Artif. Intell. , vol.35 , pp. 286-298
    • Afzali, N.1    Azmi, R.2
  • 18
    • 84979233344 scopus 로고    scopus 로고
    • A survey on machine learning techniques for intrusion detection systems
    • Singh, J., Nene, M.J., A survey on machine learning techniques for intrusion detection systems. Int. J. Adv. Res. Comput. Commun. Eng. 2:11 (2013), 4349–4355.
    • (2013) Int. J. Adv. Res. Comput. Commun. Eng. , vol.2 , Issue.11 , pp. 4349-4355
    • Singh, J.1    Nene, M.J.2
  • 19
    • 84921643054 scopus 로고    scopus 로고
    • Survey on intrusion detection system using machine learning techniques
    • Wagh, S.K., Survey on intrusion detection system using machine learning techniques. Int. J. Comput. Appl. 78:16 (2013), 30–37.
    • (2013) Int. J. Comput. Appl. , vol.78 , Issue.16 , pp. 30-37
    • Wagh, S.K.1
  • 20
    • 84929461849 scopus 로고    scopus 로고
    • Research on Intrusion Detection Algorithm Based on BP Neural Network, no. 4
    • C. Qiu, J. Shan, B. Polytechnic, B. Shandong, Research on Intrusion Detection Algorithm Based on BP Neural Network, vol. 9, no. 4, pp. 247–258, 2015.
    • (2015) , vol.9 , pp. 247-258
    • Qiu, C.1    Shan, J.2    Polytechnic, B.3    Shandong, B.4
  • 21
    • 48749120519 scopus 로고    scopus 로고
    • Intrusion detection system using self organizing map
    • Vokorokos, L., Baláž A., Chovanec, M., Intrusion detection system using self organizing map. Informatica 6:1 (2006), 1–6.
    • (2006) Informatica , vol.6 , Issue.1 , pp. 1-6
    • Vokorokos, L.1    Baláž, A.2    Chovanec, M.3
  • 22
    • 85045713535 scopus 로고    scopus 로고
    • Application of Neural Networks to Intrusion Detection.
    • J.-P. Planquart, Application of Neural Networks to Intrusion Detection, 2001.
    • (2001)
    • Planquart, J.-P.1
  • 24
    • 85045705029 scopus 로고    scopus 로고
    • State of the Practice of Intrusion Detection Technologies, Technical Report no. CMU/SEI-99-TR- 028, Tech. Rep., no. January
    • J. Allen, C., Alan, F., William, M., John, P. Jed, and S. Ed, State of the Practice of Intrusion Detection Technologies, Technical Report no. CMU/SEI-99-TR- 028, Tech. Rep., no. January, p. 221, 2000.
    • (2000) , pp. 221
    • Allen, J.1    Alan, C.F.2    William, M.3    Jed, J.P.4    Ed, S.5
  • 25
    • 0033295259 scopus 로고    scopus 로고
    • Bro: a system for detecting network intruders in real-time
    • Paxson, V., Bro: a system for detecting network intruders in real-time. Comput. Networks 31:23 (1999), 2435–2463.
    • (1999) Comput. Networks , vol.31 , Issue.23 , pp. 2435-2463
    • Paxson, V.1
  • 27
    • 33749834749 scopus 로고    scopus 로고
    • A memory-efficient parallel string matching architecture for high-speed intrusion detection
    • Lu, H., Zheng, K., Liu, B., Zhang, X., Liu, Y., A memory-efficient parallel string matching architecture for high-speed intrusion detection. IEEE J. Sel. Areas Commun. 24:10 (2006), 1793–1803.
    • (2006) IEEE J. Sel. Areas Commun. , vol.24 , Issue.10 , pp. 1793-1803
    • Lu, H.1    Zheng, K.2    Liu, B.3    Zhang, X.4    Liu, Y.5
  • 31
    • 85045712645 scopus 로고    scopus 로고
    • Combining statistical network data, probabilistic neural networks and the computational power of GPUs for anomaly detection in computer networks, Work. Intell. Secur. (SecArt 2009), no. iii
    • S. Bastke, Combining statistical network data, probabilistic neural networks and the computational power of GPUs for anomaly detection in computer networks, Work. Intell. Secur. (SecArt 2009), no. iii, pp. 1–6, 2009.
    • (2009) , pp. 1-6
    • Bastke, S.1
  • 32
    • 80655146205 scopus 로고    scopus 로고
    • Theoretical and mathematical foundations of computer science
    • OuYang, Q., Theoretical and mathematical foundations of computer science. Commun. Comput. Inf. Sci. 164:January (2011), 154–160.
    • (2011) Commun. Comput. Inf. Sci. , vol.164 , Issue.January , pp. 154-160
    • OuYang, Q.1
  • 33
    • 85045699358 scopus 로고    scopus 로고
    • Sasanka Potluri and Christian Diedrich, High Performance Intrusion Detection and Prevention Systems: A Survey, unpublished.
    • Sasanka Potluri and Christian Diedrich, High Performance Intrusion Detection and Prevention Systems: A Survey, unpublished.
  • 36
    • 84989278393 scopus 로고    scopus 로고
    • An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set
    • Shrivas, A.K., Dewangan, A.K., An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set. Int. J. Comp. Appl. 99 (2014), 8–13.
    • (2014) Int. J. Comp. Appl. , vol.99 , pp. 8-13
    • Shrivas, A.K.1    Dewangan, A.K.2
  • 37
    • 84902253010 scopus 로고    scopus 로고
    • Intrusion detection system using data mining technique: support vector machine
    • Bhavsar, Y.B., Waghmare, K.C., Intrusion detection system using data mining technique: support vector machine. Int. J. Emerg. Technol. Adv. Eng. 3 (2013), 581–586.
    • (2013) Int. J. Emerg. Technol. Adv. Eng. , vol.3 , pp. 581-586
    • Bhavsar, Y.B.1    Waghmare, K.C.2
  • 38
    • 84943230434 scopus 로고    scopus 로고
    • A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection
    • Revathi, D.a.M.S., A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. Int. J. Eng. Res. Technol. 2:12 (2013), 1848–1853.
    • (2013) Int. J. Eng. Res. Technol. , vol.2 , Issue.12 , pp. 1848-1853
    • Revathi, D.A.M.S.1
  • 39
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • Cireşan, D., Meier, U., Schmidhuber, J., Multi-column deep neural networks for image classification. Int. Conf. Pattern Recognit.(February), 2012, 3642–3649.
    • (2012) Int. Conf. Pattern Recognit. , Issue.February , pp. 3642-3649
    • Cireşan, D.1    Meier, U.2    Schmidhuber, J.3
  • 41
    • 85045708496 scopus 로고    scopus 로고
    • Chung, Accelerating Deep Convolutional Neural Networks Using Specialized Hardware
    • K. Ovtcharov, O., Ruwase, J., Kim, J., Fowers, K. Strauss, E.S. Chung, Accelerating Deep Convolutional Neural Networks Using Specialized Hardware, pp. 3–6, 2015.
    • (2015) , pp. 3-6
    • Ovtcharov, K.1    Ruwase, O.J.2    Kim, J.3    Fowers, K.4    Strauss, E.S.5
  • 42
    • 84996538384 scopus 로고    scopus 로고
    • Accelerated deep neural networks for enhanced Intrusion Detection System. In Emerging Technologies and Factory Automation (ETFA) IEEE 21st International Conference on,. IEEE.
    • Potluri, Sasanka, and Christian Diedrich Accelerated deep neural networks for enhanced Intrusion Detection System. In Emerging Technologies and Factory Automation (ETFA), 2016 IEEE 21st International Conference on, pp. 1–8. IEEE, 2016.
    • (2016) , pp. 1-8
    • Sasanka, P.1    Diedrich, C.2
  • 43
    • 84959450366 scopus 로고    scopus 로고
    • Investigations of automatic methods for detecting the polymorphic worms signatures
    • Aljawarneh, S.A., Moftah, R.A., Maatuk, A.M., Investigations of automatic methods for detecting the polymorphic worms signatures. Futur. Gener. Comput. Syst. 60 (2016), 67–77.
    • (2016) Futur. Gener. Comput. Syst. , vol.60 , pp. 67-77
    • Aljawarneh, S.A.1    Moftah, R.A.2    Maatuk, A.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.