-
1
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
2
-
-
84867491753
-
Feature selection: An ever evolving frontier in data mining
-
H. Liu, H. Motoda, R. Setiono, and Z. Zhao, "Feature selection: An ever evolving frontier in data mining," Journal of Machine Learning Research, vol. 10, pp. 4-13, 2010
-
(2010)
Journal of Machine Learning Research
, vol.10
, pp. 4-13
-
-
Liu, H.1
Motoda, H.2
Setiono, R.3
Zhao, Z.4
-
3
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan. "Sparse representation for computer vision and pattern recognition," Proceedings of the IEEE, vol. 98, no. 6, pp. 10311044, 2010
-
(2010)
Proceedings of the IEEE
, vol.98
, Issue.6
, pp. 10311044
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.S.5
Yan, S.6
-
4
-
-
58149463443
-
Feature selection for high-dimensional data
-
A. Destrero, S. Mosci, C. De Mol, A. Verri, and F. Odone, "Feature selection for high-dimensional data," Computational Management Science, vol. 6, no. 1, pp. 25-40, 2009
-
(2009)
Computational Management Science
, vol.6
, Issue.1
, pp. 25-40
-
-
Destrero, A.1
Mosci, S.2
De Mol, C.3
Verri, A.4
Odone, F.5
-
5
-
-
84864145739
-
Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification
-
S. L. Wang, X. L. Li, and J. W. Fang, "Finding minimum gene subsets with heuristic breadth-first search algorithm for robust tumor classification," BMC Bioinformatics, vol. 13, pp. 178, 2012
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 178
-
-
Wang, S.L.1
Li, X.L.2
Fang, J.W.3
-
6
-
-
84873170469
-
Maximum weight and minimum redundancy: A novel framework for feature subset selection
-
J. Z. Wang, L. S. Wu, J. Kong, Y. X. Li, and B. X. Zhang, "Maximum weight and minimum redundancy: A novel framework for feature subset selection," Pattern Recognition, vol. 46, no. 6, pp. 1616-1627, 2013
-
(2013)
Pattern Recognition
, vol.46
, Issue.6
, pp. 1616-1627
-
-
Wang, J.Z.1
Wu, L.S.2
Kong, J.3
Li, Y.X.4
Zhang, B.X.5
-
7
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu, and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," The Journal of Machine Learning Research, vol. 5, pp. 1205-1224, 2004
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
8
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
H. C. Peng, F. H. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226-1238, 2005
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.C.1
Long, F.H.2
Ding, C.3
-
9
-
-
0036139278
-
Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
-
L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, "Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method," Bioinformatics, vol. 17, no. 12, pp: 1131-1142, 2001
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1131-1142
-
-
Li, L.1
Weinberg, C.R.2
Darden, T.A.3
Pedersen, L.G.4
-
10
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Machine learning, vol. 46, no. 1-3, pp: 389-422, 2002
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
11
-
-
17444386734
-
HykGene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
-
Y. Wang, F. S. Makedon, J. C. Ford, and J. Pearlman, "HykGene: A hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data," Bioinformatics, vol. 21, no. 8, pp: 1530-1537, 2005
-
(2005)
Bioinformatics
, vol.21
, Issue.8
, pp. 1530-1537
-
-
Wang, Y.1
Makedon, F.S.2
Ford, J.C.3
Pearlman, J.4
-
12
-
-
79951514865
-
A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
-
A. El Akadi, A. Amine, A. El Ouardighi, and D. Aboutajdine, "A two-stage gene selection scheme utilizing MRMR filter and GA wrapper," Knowledge and Information Systems, vol. 26, no. 3, pp: 487-500, 2011
-
(2011)
Knowledge and Information Systems
, vol.26
, Issue.3
, pp. 487-500
-
-
El Akadi, A.1
Amine, A.2
El Ouardighi, A.3
Aboutajdine, D.4
-
13
-
-
84855461005
-
A hybrid BPSO-CGA approach for gene selection and classification of microarray data
-
L. Y. Chuang, C. H. Yang, J. C. Li, and C. H. Yang, "A hybrid BPSO-CGA approach for gene selection and classification of microarray data," Journal of Computational Biology, vol. 19, no. 1, pp: 68-82, 2012
-
(2012)
Journal of Computational Biology
, vol.19
, Issue.1
, pp. 68-82
-
-
Chuang, L.Y.1
Yang, C.H.2
Li, J.C.3
Yang, C.H.4
-
14
-
-
74649083315
-
Ensemble gene selection by grouping for microarray data classification
-
H. W. Liu, L. Liu, and H. J. Zhang, "Ensemble gene selection by grouping for microarray data classification," Journal of Biomedical Informatics, vol. 43, no. 1, pp: 81-87, 2010
-
(2010)
Journal of Biomedical Informatics
, vol.43
, Issue.1
, pp. 81-87
-
-
Liu, H.W.1
Liu, L.2
Zhang, H.J.3
-
15
-
-
84863403768
-
Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
-
G. Brown, A. Pocock, M. J. Zhao, and M. Lujan, "Conditional likelihood maximisation: A unifying framework for information theoretic feature selection," The Journal of Machine Learning Research, vol. 13, pp: 27-66, 2012
-
(2012)
The Journal of Machine Learning Research
, vol.13
, pp. 27-66
-
-
Brown, G.1
Pocock, A.2
Zhao, M.J.3
Lujan, M.4
-
16
-
-
79955444979
-
The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data
-
Q. Cheng, H. B. Zhou, and J. Cheng. "The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 6, pp. 1217-1233, 2011
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.6
, pp. 1217-1233
-
-
Cheng, Q.1
Zhou, H.B.2
Cheng, J.3
-
17
-
-
84873278481
-
On similarity preserving feature selection
-
Z. Zhao, L. Wang, H. Liu, and J. P. Ye, "On similarity preserving feature selection," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 3, pp. 619-632, 2013
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.P.4
-
18
-
-
0003957032
-
Weka: Practical machine learning tools and techniques with java implementations
-
New Zealand: University of Waikato, Department of Computer Science
-
I. H. Witten, E. Frank, L. E. Trigg, M. A. Mark, G. Holmes, and S. J. Cunningham, "Weka: Practical Machine Learning Tools and Techniques with Java Implementations," Hamilton, New Zealand: University of Waikato, Department of Computer Science, 1999.
-
(1999)
Hamilton
-
-
Witten, I.H.1
Frank, E.2
Trigg, L.E.3
Mark, M.A.4
Holmes, G.5
Cunningham, S.J.6
|