메뉴 건너뛰기




Volumn 4, Issue 3, 2009, Pages 542-551

Improvement in intrusion detection with advances in sensor fusion

Author keywords

Chebyshev inequality; Data dependent decision (DD) fusion; Intrusion detection systems (IDSs); Neural network; Sensor fusion

Indexed keywords

CHEBYSHEV INEQUALITIES; CHEBYSHEV INEQUALITY; COMPUTING POWER; D-D FUSION; DATA-DEPENDENT DECISION (DD) FUSION; DETECTION RATES; EMPIRICAL EVALUATIONS; FALSE ALARMS; FUSION METHODS; INTRUSION DETECTION SYSTEMS; INTRUSION DETECTION SYSTEMS (IDSS); MULTIPLE SENSORS; PERFORMANCE OPTIMIZATIONS; SENSOR FUSION;

EID: 69749095234     PISSN: 15566013     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIFS.2009.2026954     Document Type: Article
Times cited : (53)

References (27)
  • 1
    • 2442505788 scopus 로고    scopus 로고
    • Towards multisensor data fusion for DoS detection
    • Nicosia, Cyprus, Mar.
    • C. Siaterlis and B. Maglaris, "Towards multisensor data fusion for DoS detection," in ACM Symp. Applied Computing, Nicosia, Cyprus, Mar. 14-17, 2004.
    • (2004) ACM Symp. Applied Computing , pp. 14-17
    • Siaterlis, C.1    Maglaris, B.2
  • 2
    • 0012061165 scopus 로고    scopus 로고
    • Multisensor data fusion for next generation distributed intrusion detection systems
    • Laurel, MD
    • T. Bass, "Multisensor data fusion for next generation distributed intrusion detection systems," in IRIS Nat. Symp., Laurel, MD, 1999.
    • (1999) IRIS Nat. Symp.
    • Bass, T.1
  • 3
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • DOI 10.1016/S0167-8655(03)00004-7
    • G. Giacinto, F. Roli, and L. Didaci, "Fusion of multiple classifiers for intrusion detection in computer networks," Pattern Recognit. Lett., vol.24, no.12, pp. 1795-1803, Aug. 2003. (Pubitemid 36558001)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 4
    • 30644460786 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by multiple classifiers systems
    • Quebec, Canada
    • L. Didaci, G. Giacinto, and F. Roli, "Intrusion detection in computer networks by multiple classifiers systems," in Int. Conf. Pattern Recognition, Quebec, Canada, 2002.
    • (2002) Int. Conf. Pattern Recognition
    • Didaci, L.1    Giacinto, G.2    Roli, F.3
  • 5
    • 4444382384 scopus 로고    scopus 로고
    • Distributed intrusion detection system based on data fusion method
    • Hangzhou, China, Jun.
    • Y. Wang, H. Yang, X. Wang, and R. Zhang, "Distributed intrusion detection system based on data fusion method," in Intelligent Control and Automation (WCICA), Hangzhou, China, Jun. 15-19, 2004.
    • (2004) Intelligent Control and Automation (WCICA) , pp. 15-19
    • Wang, Y.1    Yang, H.2    Wang, X.3    Zhang, R.4
  • 6
    • 35949000533 scopus 로고    scopus 로고
    • Selection of intrusion detection threshold bounds for effective sensor fusion
    • Apr.
    • C. Thomas and N. Balakrishnan, "Selection of intrusion detection threshold bounds for effective sensor fusion," in Proc. SPIE Int. Symp. Defense ans Security, Apr. 2007, vol.6570.
    • (2007) Proc. SPIE Int. Symp. Defense Ans Security , vol.6570
    • Thomas, C.1    Balakrishnan, N.2
  • 8
    • 39749091030 scopus 로고    scopus 로고
    • Intrusion detection engine based on Dempster-Shafer's theory of evidence
    • DOI 10.1109/ICCCAS.2006.284985, 4064211, 2006 International Conference on Communications, Circuits and Systems, ICCCAS, Proceedings - Computer, Optical and Broadband Communications, Computational Intelligence
    • W. Hu, J. Li, and Q. Gao, "Intrusion detection engine on Dempster-Shafer's theory of evidence," in Proc. Int. Conf. Communications, Circuits and Systems, Jun. 2006, vol.3, pp. 1627-1631. (Pubitemid 351307331)
    • (2006) 2006 International Conference on Communications, Circuits and Systems, ICCCAS, Proceedings , vol.3 , pp. 1627-1631
    • Hu, W.1    Li, J.2    Gao, Q.3
  • 9
    • 12344304006 scopus 로고    scopus 로고
    • Intrusion sensor data fusion in an intelligent intrusion detection system architecture
    • Big Island, HI
    • A. Siraj, R.B.Vaughn, andS. M. Bridges, "Intrusion sensor data fusion in an intelligent intrusion detection system architecture," in Proc. 37th Hawaii Int. Conf. System Sciences, Big Island, HI, 2004.
    • (2004) Proc. 37th Hawaii Int. Conf. System Sciences
    • Siraj, A.1    Vaughn, R.B.2    Bridges, S.M.3
  • 11
    • 33646037321 scopus 로고    scopus 로고
    • Alarm clustering for intrusion detection systems in computer networks
    • Amsterdam, The Netherlands: Elsevier
    • R. Perdisci, G. Giacinto, and F. Roli, "Alarm clustering for intrusion detection systems in computer networks," in Engineering Applications of Artificial Intelligence. Amsterdam, The Netherlands: Elsevier, 2006.
    • (2006) Engineering Applications of Artificial Intelligence
    • Perdisci, R.1    Giacinto, G.2    Roli, F.3
  • 15
    • 10444267028 scopus 로고    scopus 로고
    • Correlation of intrusion symptoms: An application of chronicles
    • B. Morin and H. Debar, "Correlation of intrusion symptoms: An application of chronicles," in RAID, 2003.
    • (2003) RAID
    • Morin, B.1    Debar, H.2
  • 16
    • 0242529344 scopus 로고    scopus 로고
    • Aggregation and correlation of intrusion-detection alerts
    • H. Debar and A. Wespi, "Aggregation and correlation of intrusion-detection alerts," in RAID, 2001.
    • (2001) RAID
    • Debar, H.1    Wespi, A.2
  • 18
    • 0242456801 scopus 로고    scopus 로고
    • Learning non stationary models of normal network traffic for detecting novel attacks
    • M. V. Mahoney and P. K. Chan, "Learning non stationary models of normal network traffic for detecting novel attacks," in SIGKDD, 2002.
    • (2002) SIGKDD
    • Mahoney, M.V.1    Chan, P.K.2
  • 19
    • 0019596509 scopus 로고
    • Detection with distributed sensors
    • Jul.
    • R. R. Tenney and N. R. Sandell, "Detection with distributed sensors," IEEE Trans. Aerosp. Electron. Syst., vol.AES-17, no.4, pp. 501-510, Jul. 1981.
    • (1981) IEEE Trans. Aerosp. Electron. Syst. , vol.AES-17 , Issue.4 , pp. 501-510
    • Tenney, R.R.1    Sandell, N.R.2
  • 20
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 classifier learning
    • Jan.
    • C. Elkan, "Results of the KDD'99 classifier learning," SIGKDD Explorations, vol.1, no.2, pp. 62-63, Jan. 2000.
    • (2000) SIGKDD Explorations , vol.1 , Issue.2 , pp. 62-63
    • Elkan, C.1
  • 22
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Apr.
    • R. P. Lippmann, "An introduction to computing with neural nets," IEEEASSP Mag., vol.4, pp. 4-22, Apr. 1987.
    • (1987) IEEEASSP Mag. , vol.4 , pp. 4-22
    • Lippmann, R.P.1
  • 24
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln laboratory
    • Nov.
    • J. McHugh, "Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln laboratory," ACM Trans. Inf. Syst. Security, vol.3, no.4, pp. 262-294, Nov. 2000.
    • (2000) ACM Trans. Inf. Syst. Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 25
    • 4344682785 scopus 로고    scopus 로고
    • An Analysis of the 1999 DARPA/ Lincoln Laboratory Evaluation Data for Network Anomaly Detection
    • unpublished
    • M. V. Mahoney and P. K. Chan, An Analysis of the 1999 DARPA/ Lincoln Laboratory Evaluation Data for Network Anomaly Detection Tech. Rep. CS-2003-2102, unpublished.
    • Tech. Rep. CS-2003-2102
    • Mahoney, M.V.1    Chan, P.K.2
  • 27
    • 33646388607 scopus 로고    scopus 로고
    • On evaluating performance of classifiers for rare classes
    • M. V. Joshi, "On evaluating performance of classifiers for rare classes," in Proc. 2002 IEEE Int. Conf. Data Mining, 2002, pp. 641-644.
    • (2002) Proc. 2002 IEEE Int. Conf. Data Mining , pp. 641-644
    • Joshi, M.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.