메뉴 건너뛰기




Volumn 23, Issue 8, 2017, Pages 2431-2446

Anomaly based intrusion detection for 802.11 networks with optimal features using SVM classifier

Author keywords

Intrusion detection system; MAC 802.11; Normalized gain (NG); Particle swarm optimization (PSO); Support vector machine (SVM) classifier; WLAN

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; COMPLEX NETWORKS; COMPUTER CRIME; ECONOMIC AND SOCIAL EFFECTS; INTRUSION DETECTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MERCURY (METAL); PARTICLE SWARM OPTIMIZATION (PSO); SUPPORT VECTOR MACHINES; WI-FI; WIRELESS TELECOMMUNICATION SYSTEMS;

EID: 84969850606     PISSN: 10220038     EISSN: 15728196     Source Type: Journal    
DOI: 10.1007/s11276-016-1300-5     Document Type: Article
Times cited : (49)

References (35)
  • 2
    • 3042737904 scopus 로고    scopus 로고
    • Wireless security’s future
    • Potter, B. (2003). Wireless security’s future. IEEE Security and Privacy, 1(4), 68–72. doi:10.1109/MSECP.2003.1219074.
    • (2003) IEEE Security and Privacy , vol.1 , Issue.4 , pp. 68-72
    • Potter, B.1
  • 3
    • 0038187631 scopus 로고    scopus 로고
    • Security problems in 802.11 based networks
    • Housley, R., & Arbaugh, W. (2003). Security problems in 802.11 based networks. Communications of the ACM, 46(5), 31–34. doi:10.1145/769800.769822.
    • (2003) Communications of the ACM , vol.46 , Issue.5 , pp. 31-34
    • Housley, R.1    Arbaugh, W.2
  • 8
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection: Techniques, systems and challenges
    • Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers and Security, 28(1), 18–28. doi:10.1016/j.cose.2008.08.003.
    • (2009) Computers and Security , vol.28 , Issue.1 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    Maciá-Fernández, G.3    Vázquez, E.4
  • 9
    • 33847198707 scopus 로고    scopus 로고
    • A wireless intrusion detection method based on neural network. In Proceedings of the second IASTED international conference advances in
    • Liu, Y., Tian, D.-X., & Wei, D. (2006). A wireless intrusion detection method based on neural network. In Proceedings of the second IASTED international conference advances in computer science and technology, pp. 207–211.
    • (2006) computer science and technology , pp. 207-211
    • Liu, Y.1    Tian, D.-X.2    Wei, D.3
  • 12
    • 34548453089 scopus 로고    scopus 로고
    • An agent based and biological inspired real-time intrusion detection and security model for computer network operations
    • Boukerche, A., Machado, R. B., Juca, K. R. L., Sobral, J. B. M., & Notare, M. S. M. A. (2007). An agent based and biological inspired real-time intrusion detection and security model for computer network operations. Computer Communication, 30(13), 2649–2660. doi:10.1016/j.comcom.2007.03.008.
    • (2007) Computer Communication , vol.30 , Issue.13 , pp. 2649-2660
    • Boukerche, A.1    Machado, R.B.2    Juca, K.R.L.3    Sobral, J.B.M.4    Notare, M.S.M.A.5
  • 13
    • 2642537707 scopus 로고    scopus 로고
    • An artificial immune based intrusion detection model for computer and telecommunication systems
    • Boukerche, A., Juc, K. R. L., Sobral, J. B., & Notare, M. S. M. A. (2004). An artificial immune based intrusion detection model for computer and telecommunication systems. Parallel Computing, 30(5), 629–646. doi:10.1016/j.parco.2003.12.008.
    • (2004) Parallel Computing , vol.30 , Issue.5 , pp. 629-646
    • Boukerche, A.1    Juc, K.R.L.2    Sobral, J.B.3    Notare, M.S.M.A.4
  • 14
    • 0036749185 scopus 로고    scopus 로고
    • Behavior-based intrusion detection in mobile phone systems
    • Boukerche, A., & Notare, M. S. M. A. (2002). Behavior-based intrusion detection in mobile phone systems. Journal of Parallel and Distributed Computing, 62(9), 1476–1490. doi:10.1006/jpdc.2002.1857.
    • (2002) Journal of Parallel and Distributed Computing , vol.62 , Issue.9 , pp. 1476-1490
    • Boukerche, A.1    Notare, M.S.M.A.2
  • 16
    • 77954310491 scopus 로고    scopus 로고
    • Impact of feature reduction on the efficiency of wireless intrusion detection systems
    • El-Khatib, K. (2010). Impact of feature reduction on the efficiency of wireless intrusion detection systems. IEEE Transactions on Parallel and Distributed Systems, 21(8), 1143–1149. doi:10.1109/TPDS.2009.142.
    • (2010) IEEE Transactions on Parallel and Distributed Systems , vol.21 , Issue.8 , pp. 1143-1149
    • El-Khatib, K.1
  • 19
    • 81855221688 scopus 로고    scopus 로고
    • Decision tree based light weight intrusion detection using a wrapper approach
    • Sindhu, S. S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight intrusion detection using a wrapper approach. Expert Systems with Applications, 39(1), 129–141. doi:10.1016/j.eswa.2011.06.013.
    • (2012) Expert Systems with Applications , vol.39 , Issue.1 , pp. 129-141
    • Sindhu, S.S.S.1    Geetha, S.2    Kannan, A.3
  • 20
    • 77953759247 scopus 로고    scopus 로고
    • Decision tree classifier for network intrusion detection with GA-based feature selection
    • Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. In Proceedings of the 43rd annual Southeast regional conference, Vol. 2, pp. 136–141. doi:10.1145/1167253.1167288.
    • (2005) In Proceedings of the 43rd annual Southeast regional conference , vol.2 , pp. 136-141
    • Stein, G.1    Chen, B.2    Wu, A.S.3    Hua, K.A.4
  • 21
  • 22
    • 38349031393 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2006). Supervised machine learning: A review of classification techniques. Artificial Intelligence Review, 26(3), 159–190.
    • (2006) Artificial Intelligence Review , vol.26 , Issue.3 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.2    Pintelas, P.3
  • 24
    • 67449127139 scopus 로고    scopus 로고
    • An agent-based rough classifier for data mining. In Eighth international conference on intelligent systems design and applications IEEE computer
    • Bakar, A. A., Othman, Z. A., Hamdan, A. R., Yusof, R., & Ismail, R. (2008). An agent-based rough classifier for data mining. In Eighth international conference on intelligent systems design and applications IEEE computer society, Vol. 1, pp. 145–151. doi:10.1109/ISDA.2008.29.
    • (2008) society , vol.1 , pp. 145-151
    • Bakar, A.A.1    Othman, Z.A.2    Hamdan, A.R.3    Yusof, R.4    Ismail, R.5
  • 25
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble design of intrusion detection systems. Computers and Security, 24(4), 295–307. doi:10.1016/j.cose.2004.09.008.
    • (2005) Computers & Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 27
    • 78651547263 scopus 로고    scopus 로고
    • A cooperative network intrusion detection based on fuzzy SVMs
    • Teng, S., Du, H., Wu, N., Zhang, W., & Su, J. (2010). A cooperative network intrusion detection based on fuzzy SVMs. Journal of Networks, 5(4), 475–483. doi:10.4304/jnw.5.4.475-483.
    • (2010) Journal of Networks , vol.5 , Issue.4 , pp. 475-483
    • Teng, S.1    Du, H.2    Wu, N.3    Zhang, W.4    Su, J.5
  • 28
    • 13544269338 scopus 로고    scopus 로고
    • Application of SVM and ANN for intrusion detection
    • Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for intrusion detection. Computers and Operations Research, 32(10), 2617–2634. doi:10.1016/j.cor.2004.03.019.
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2617-2634
    • Chen, W.H.1    Hsu, S.H.2    Shen, H.P.3
  • 30
    • 0141522774 scopus 로고    scopus 로고
    • Multi class support vector machine implementation to intrusion detection. In Proceedings of the
    • Ambwani, T. (2003). Multi class support vector machine implementation to intrusion detection. In Proceedings of the international joint conference on neural networks, Vol. 3, pp. 2300–2305. doi:10.1109/IJCNN.2003.1223770.
    • (2003) international joint conference on neural networks , vol.3 , pp. 2300-2305
    • Ambwani, T.1
  • 32
    • 85030130071 scopus 로고    scopus 로고
    • Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain
    • Saxena, H., & Richariya, V. (2014). Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain. International Journal of Computer Applications, 98(6), 25–29. doi:10.5120/17188-7369.
    • (2014) International Journal of Computer Applications , vol.98 , Issue.6 , pp. 25-29
    • Saxena, H.1    Richariya, V.2
  • 33
    • 84997469798 scopus 로고    scopus 로고
    • Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO)
    • Manekar, V., & Waghmare, K. (2014). Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO). International Journal of Advanced Computer Research, 4(3), 808.
    • (2014) International Journal of Advanced Computer Research , vol.4 , Issue.3 , pp. 808
    • Manekar, V.1    Waghmare, K.2
  • 34
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO–SVM hybrid system with feature selection and parameter optimization
    • Huang, C.-L., & Dun, J.-F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 1381–1391. doi:10.1016/j.asoc.2007.10.007.
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1381-1391
    • Huang, C.-L.1    Dun, J.-F.2
  • 35
    • 84962359508 scopus 로고    scopus 로고
    • Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset
    • Kolias, C., Kambourakis, G., Stavrou, A., & Gritzalis, S. (2015). Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Communications Surveys & Tutorials, 18(1), 184–208. doi:10.1109/COMST.2015.2402161.
    • (2015) IEEE Communications Surveys & Tutorials , vol.18 , Issue.1 , pp. 184-208
    • Kolias, C.1    Kambourakis, G.2    Stavrou, A.3    Gritzalis, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.