-
1
-
-
84865349303
-
The insecurity of wireless networks
-
Sheldon, F. T., Weber, J. M., Yoo, S.-M., & David Pan, W. (2012). The insecurity of wireless networks. IEEE Security and Privacy, 10(4), 54–61. doi:10.1109/MSP.2012.60.
-
(2012)
IEEE Security and Privacy
, vol.10
, Issue.4
, pp. 54-61
-
-
Sheldon, F.T.1
Weber, J.M.2
Yoo, S.-M.3
David Pan, W.4
-
2
-
-
3042737904
-
Wireless security’s future
-
Potter, B. (2003). Wireless security’s future. IEEE Security and Privacy, 1(4), 68–72. doi:10.1109/MSECP.2003.1219074.
-
(2003)
IEEE Security and Privacy
, vol.1
, Issue.4
, pp. 68-72
-
-
Potter, B.1
-
3
-
-
0038187631
-
Security problems in 802.11 based networks
-
Housley, R., & Arbaugh, W. (2003). Security problems in 802.11 based networks. Communications of the ACM, 46(5), 31–34. doi:10.1145/769800.769822.
-
(2003)
Communications of the ACM
, vol.46
, Issue.5
, pp. 31-34
-
-
Housley, R.1
Arbaugh, W.2
-
4
-
-
70449123717
-
A survey on wireless security protocols (WEP, WPA & WPA2/802.11 i)
-
In
-
Lashkari, A. H., Danesh, M. M. S., & Samadi, B. (2009). A survey on wireless security protocols (WEP, WPA & WPA2/802.11 i). In Computer science and information technology 2nd IEEE international conference, pp. 48–52. doi:10.1109/ICCSIT.2009.5234856.
-
(2009)
Computer science and information technology 2nd IEEE international conference
, pp. 48-52
-
-
Lashkari, A.H.1
Danesh, M.M.S.2
Samadi, B.3
-
7
-
-
59949087541
-
A survey on anomaly detection methods for ad hoc networks
-
Azer, M. A., El-Kassas, S. M., & El-Soudani, M. S. (2005). A survey on anomaly detection methods for ad hoc networks. Ubiquitous Computing and Communication Journal, 2(3), 67–76.
-
(2005)
Ubiquitous Computing and Communication Journal
, vol.2
, Issue.3
, pp. 67-76
-
-
Azer, M.A.1
El-Kassas, S.M.2
El-Soudani, M.S.3
-
8
-
-
57849130705
-
Anomaly-based network intrusion detection: Techniques, systems and challenges
-
Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers and Security, 28(1), 18–28. doi:10.1016/j.cose.2008.08.003.
-
(2009)
Computers and Security
, vol.28
, Issue.1
, pp. 18-28
-
-
Garcia-Teodoro, P.1
Diaz-Verdejo, J.2
Maciá-Fernández, G.3
Vázquez, E.4
-
9
-
-
33847198707
-
A wireless intrusion detection method based on neural network. In Proceedings of the second IASTED international conference advances in
-
Liu, Y., Tian, D.-X., & Wei, D. (2006). A wireless intrusion detection method based on neural network. In Proceedings of the second IASTED international conference advances in computer science and technology, pp. 207–211.
-
(2006)
computer science and technology
, pp. 207-211
-
-
Liu, Y.1
Tian, D.-X.2
Wei, D.3
-
10
-
-
33847254494
-
Intrusion detection in wireless networks using clustering techniques with expert analysis
-
Khoshgoftaar, T. M., Nath, S. V., Zhong, S., & Seliya, N. (2005). Intrusion detection in wireless networks using clustering techniques with expert analysis. In Process fourth international conference machine learning and applications. doi:10.1109/ICMLA.2005.43.
-
(2005)
In Process fourth international conference machine learning and applications
-
-
Khoshgoftaar, T.M.1
Nath, S.V.2
Zhong, S.3
Seliya, N.4
-
11
-
-
33845876880
-
A clustering approach to wireless network intrusion detection
-
In, p
-
Zhong, S., Khoshgoftaar, T. M., & Nath, S. V. (2005). A clustering approach to wireless network intrusion detection. In Process 17th IEEE international conference tools with artificial intelligence (ICTAI), p. 196. doi:10.1109/ICTAI.2005.5.
-
(2005)
Process 17th IEEE international conference tools with artificial intelligence (ICTAI
, pp. 196
-
-
Zhong, S.1
Khoshgoftaar, T.M.2
Nath, S.V.3
-
12
-
-
34548453089
-
An agent based and biological inspired real-time intrusion detection and security model for computer network operations
-
Boukerche, A., Machado, R. B., Juca, K. R. L., Sobral, J. B. M., & Notare, M. S. M. A. (2007). An agent based and biological inspired real-time intrusion detection and security model for computer network operations. Computer Communication, 30(13), 2649–2660. doi:10.1016/j.comcom.2007.03.008.
-
(2007)
Computer Communication
, vol.30
, Issue.13
, pp. 2649-2660
-
-
Boukerche, A.1
Machado, R.B.2
Juca, K.R.L.3
Sobral, J.B.M.4
Notare, M.S.M.A.5
-
13
-
-
2642537707
-
An artificial immune based intrusion detection model for computer and telecommunication systems
-
Boukerche, A., Juc, K. R. L., Sobral, J. B., & Notare, M. S. M. A. (2004). An artificial immune based intrusion detection model for computer and telecommunication systems. Parallel Computing, 30(5), 629–646. doi:10.1016/j.parco.2003.12.008.
-
(2004)
Parallel Computing
, vol.30
, Issue.5
, pp. 629-646
-
-
Boukerche, A.1
Juc, K.R.L.2
Sobral, J.B.3
Notare, M.S.M.A.4
-
14
-
-
0036749185
-
Behavior-based intrusion detection in mobile phone systems
-
Boukerche, A., & Notare, M. S. M. A. (2002). Behavior-based intrusion detection in mobile phone systems. Journal of Parallel and Distributed Computing, 62(9), 1476–1490. doi:10.1006/jpdc.2002.1857.
-
(2002)
Journal of Parallel and Distributed Computing
, vol.62
, Issue.9
, pp. 1476-1490
-
-
Boukerche, A.1
Notare, M.S.M.A.2
-
15
-
-
79956097533
-
Mutual information-based feature selection for intrusion detection systems
-
Amiri, F., Yousefi, M. M. R., Lucas, C., Shakery, A., & Yazdani, N. (2011). Mutual information-based feature selection for intrusion detection systems. Journal of Network and Computer Applications, 34(4), 1184–1199. doi:10.1016/j.jnca.2011.01.002.
-
(2011)
Journal of Network and Computer Applications
, vol.34
, Issue.4
, pp. 1184-1199
-
-
Amiri, F.1
Yousefi, M.M.R.2
Lucas, C.3
Shakery, A.4
Yazdani, N.5
-
16
-
-
77954310491
-
Impact of feature reduction on the efficiency of wireless intrusion detection systems
-
El-Khatib, K. (2010). Impact of feature reduction on the efficiency of wireless intrusion detection systems. IEEE Transactions on Parallel and Distributed Systems, 21(8), 1143–1149. doi:10.1109/TPDS.2009.142.
-
(2010)
IEEE Transactions on Parallel and Distributed Systems
, vol.21
, Issue.8
, pp. 1143-1149
-
-
El-Khatib, K.1
-
18
-
-
84899118527
-
A hybrid anomaly detection model using G-LDA
-
Kasliwal, B., Bhatia, S., Saini, S., & Kumar, C. A. (2014). A hybrid anomaly detection model using G-LDA. In Advance computing conference (IACC) IEEE international, pp. 288–293. doi:10.1109/IAdCC.2014.6779336.
-
(2014)
In Advance computing conference (IACC) IEEE international
, pp. 288-293
-
-
Kasliwal, B.1
Bhatia, S.2
Saini, S.3
Kumar, C.A.4
-
19
-
-
81855221688
-
Decision tree based light weight intrusion detection using a wrapper approach
-
Sindhu, S. S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight intrusion detection using a wrapper approach. Expert Systems with Applications, 39(1), 129–141. doi:10.1016/j.eswa.2011.06.013.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.1
, pp. 129-141
-
-
Sindhu, S.S.S.1
Geetha, S.2
Kannan, A.3
-
20
-
-
77953759247
-
Decision tree classifier for network intrusion detection with GA-based feature selection
-
Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. In Proceedings of the 43rd annual Southeast regional conference, Vol. 2, pp. 136–141. doi:10.1145/1167253.1167288.
-
(2005)
In Proceedings of the 43rd annual Southeast regional conference
, vol.2
, pp. 136-141
-
-
Stein, G.1
Chen, B.2
Wu, A.S.3
Hua, K.A.4
-
22
-
-
38349031393
-
Supervised machine learning: A review of classification techniques
-
Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2006). Supervised machine learning: A review of classification techniques. Artificial Intelligence Review, 26(3), 159–190.
-
(2006)
Artificial Intelligence Review
, vol.26
, Issue.3
, pp. 159-190
-
-
Kotsiantis, S.B.1
Zaharakis, I.2
Pintelas, P.3
-
23
-
-
78651532396
-
Comparison of classification methods based on the type of attributes and sample size
-
Entezari-Maleki, R., Rezaei, A., & Minaei-Bidgoli, B. (2009). Comparison of classification methods based on the type of attributes and sample size. Journal of Convergence Information Technology, 4(3), 94–102.
-
(2009)
Journal of Convergence Information Technology
, vol.4
, Issue.3
, pp. 94-102
-
-
Entezari-Maleki, R.1
Rezaei, A.2
Minaei-Bidgoli, B.3
-
24
-
-
67449127139
-
An agent-based rough classifier for data mining. In Eighth international conference on intelligent systems design and applications IEEE computer
-
Bakar, A. A., Othman, Z. A., Hamdan, A. R., Yusof, R., & Ismail, R. (2008). An agent-based rough classifier for data mining. In Eighth international conference on intelligent systems design and applications IEEE computer society, Vol. 1, pp. 145–151. doi:10.1109/ISDA.2008.29.
-
(2008)
society
, vol.1
, pp. 145-151
-
-
Bakar, A.A.1
Othman, Z.A.2
Hamdan, A.R.3
Yusof, R.4
Ismail, R.5
-
25
-
-
19944364877
-
Feature deduction and ensemble design of intrusion detection systems
-
Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble design of intrusion detection systems. Computers and Security, 24(4), 295–307. doi:10.1016/j.cose.2004.09.008.
-
(2005)
Computers & Security
, vol.24
, Issue.4
, pp. 295-307
-
-
Chebrolu, S.1
Abraham, A.2
Thomas, J.P.3
-
26
-
-
84863053344
-
Anomaly intrusion detection method based on k-means clustering algorithm with particle swarm optimization
-
Li, Z., Li, Y., & Xu, L. (2011). Anomaly intrusion detection method based on k-means clustering algorithm with particle swarm optimization. In Information technology computer engineering and management sciences (ICM) international conference, Vol. 2, pp. 157–161. doi:10.1109/ICM.2011.184.
-
(2011)
In Information technology computer engineering and management sciences (ICM) international conference, Vol
, vol.2
, pp. 157-161
-
-
Li, Z.1
Li, Y.2
Xu, L.3
-
27
-
-
78651547263
-
A cooperative network intrusion detection based on fuzzy SVMs
-
Teng, S., Du, H., Wu, N., Zhang, W., & Su, J. (2010). A cooperative network intrusion detection based on fuzzy SVMs. Journal of Networks, 5(4), 475–483. doi:10.4304/jnw.5.4.475-483.
-
(2010)
Journal of Networks
, vol.5
, Issue.4
, pp. 475-483
-
-
Teng, S.1
Du, H.2
Wu, N.3
Zhang, W.4
Su, J.5
-
28
-
-
13544269338
-
Application of SVM and ANN for intrusion detection
-
Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for intrusion detection. Computers and Operations Research, 32(10), 2617–2634. doi:10.1016/j.cor.2004.03.019.
-
(2005)
Computers and Operations Research
, vol.32
, Issue.10
, pp. 2617-2634
-
-
Chen, W.H.1
Hsu, S.H.2
Shen, H.P.3
-
29
-
-
1542284996
-
Improving one-class SVM for anomaly detection
-
Li, K. L., Huang, H. K., Tian, S. F., & Xu, W. (2003). Improving one-class SVM for anomaly detection. International Conference on Machine Learning and Cybernetics, 5, 3077–3081. doi:10.1109/ICMLC.2003.1260106.
-
(2003)
International Conference on Machine Learning and Cybernetics
, vol.5
, pp. 3077-3081
-
-
Li, K.L.1
Huang, H.K.2
Tian, S.F.3
Xu, W.4
-
30
-
-
0141522774
-
Multi class support vector machine implementation to intrusion detection. In Proceedings of the
-
Ambwani, T. (2003). Multi class support vector machine implementation to intrusion detection. In Proceedings of the international joint conference on neural networks, Vol. 3, pp. 2300–2305. doi:10.1109/IJCNN.2003.1223770.
-
(2003)
international joint conference on neural networks
, vol.3
, pp. 2300-2305
-
-
Ambwani, T.1
-
31
-
-
79551528921
-
A real-time intrusion detection system based on PSO-SVM
-
Wang, J., Hong, X., Ren, R., & Li, T. (2009). A real-time intrusion detection system based on PSO-SVM. In Proceedings of the international workshop on information security and application, pp. 319–321.
-
(2009)
Proceedings of the international workshop on information security and application
, pp. 319-321
-
-
Wang, J.1
Hong, X.2
Ren, R.3
Li, T.4
-
32
-
-
85030130071
-
Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain
-
Saxena, H., & Richariya, V. (2014). Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain. International Journal of Computer Applications, 98(6), 25–29. doi:10.5120/17188-7369.
-
(2014)
International Journal of Computer Applications
, vol.98
, Issue.6
, pp. 25-29
-
-
Saxena, H.1
Richariya, V.2
-
33
-
-
84997469798
-
Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO)
-
Manekar, V., & Waghmare, K. (2014). Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO). International Journal of Advanced Computer Research, 4(3), 808.
-
(2014)
International Journal of Advanced Computer Research
, vol.4
, Issue.3
, pp. 808
-
-
Manekar, V.1
Waghmare, K.2
-
34
-
-
50149108380
-
A distributed PSO–SVM hybrid system with feature selection and parameter optimization
-
Huang, C.-L., & Dun, J.-F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 1381–1391. doi:10.1016/j.asoc.2007.10.007.
-
(2008)
Applied Soft Computing
, vol.8
, Issue.4
, pp. 1381-1391
-
-
Huang, C.-L.1
Dun, J.-F.2
-
35
-
-
84962359508
-
Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset
-
Kolias, C., Kambourakis, G., Stavrou, A., & Gritzalis, S. (2015). Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Communications Surveys & Tutorials, 18(1), 184–208. doi:10.1109/COMST.2015.2402161.
-
(2015)
IEEE Communications Surveys & Tutorials
, vol.18
, Issue.1
, pp. 184-208
-
-
Kolias, C.1
Kambourakis, G.2
Stavrou, A.3
Gritzalis, S.4
|