-
1
-
-
77952893307
-
Cyber-threat proliferation: today's truly pervasive global epidemic
-
Kellerman T. Cyber-threat proliferation: today's truly pervasive global epidemic. IEEE Secur. Privacy 2010, 8(3):70-73.
-
(2010)
IEEE Secur. Privacy
, vol.8
, Issue.3
, pp. 70-73
-
-
Kellerman, T.1
-
2
-
-
79960062556
-
Cyber wars: a paradigm shift from means to ends
-
Sharma A. Cyber wars: a paradigm shift from means to ends. Strategic Anal. 2010, 34(1):62-73.
-
(2010)
Strategic Anal.
, vol.34
, Issue.1
, pp. 62-73
-
-
Sharma, A.1
-
3
-
-
77956297467
-
The profession of IT: discussing cyber attack
-
Denning P.J., Denning D.E. The profession of IT: discussing cyber attack. Commun. ACM 2010, 53(9):29-31.
-
(2010)
Commun. ACM
, vol.53
, Issue.9
, pp. 29-31
-
-
Denning, P.J.1
Denning, D.E.2
-
4
-
-
63049137706
-
Information security: the moving target
-
Dlamini M., Eloff J.H.P., Eloff M.M. Information security: the moving target. Comput. Secur. 2009, 28(3-4):189-198.
-
(2009)
Comput. Secur.
, vol.28
, Issue.3-4
, pp. 189-198
-
-
Dlamini, M.1
Eloff, J.H.P.2
Eloff, M.M.3
-
5
-
-
27644509266
-
Intrusion detection systems and intrusion prevention systems
-
Fuchsberger A. Intrusion detection systems and intrusion prevention systems. Inf. Secur. Tech. Rep. 2005, 10:134-139.
-
(2005)
Inf. Secur. Tech. Rep.
, vol.10
, pp. 134-139
-
-
Fuchsberger, A.1
-
6
-
-
34250315640
-
An overview of anomaly detection techniques: existing solutions and latest technological trends
-
Patcha A., Park J.-M. An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Networks 2007, 51(12):3448-3470.
-
(2007)
Comput. Networks
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.-M.2
-
7
-
-
80455177941
-
Towards cyber defense: research in intrusion detection and intrusion prevention systems
-
Faysel M.A., Haque S.S. Towards cyber defense: research in intrusion detection and intrusion prevention systems. IJCSNS 2010, 10(7):316-325.
-
(2010)
IJCSNS
, vol.10
, Issue.7
, pp. 316-325
-
-
Faysel, M.A.1
Haque, S.S.2
-
9
-
-
67649726426
-
Building lightweight intrusion detection system using wrapper-based feature selection mechanisms
-
Li Y., Wang J., Tian Z., Luc T., Young C. Building lightweight intrusion detection system using wrapper-based feature selection mechanisms. Comput. Secur. 2009, 28(6):466-475.
-
(2009)
Comput. Secur.
, vol.28
, Issue.6
, pp. 466-475
-
-
Li, Y.1
Wang, J.2
Tian, Z.3
Luc, T.4
Young, C.5
-
10
-
-
19944364877
-
Feature deduction and ensemble design of intrusion detection systems
-
Chebrolou S., Abraham A., Thomas J.P. Feature deduction and ensemble design of intrusion detection systems. Comput. Secur. 2005, 25:295-307.
-
(2005)
Comput. Secur.
, vol.25
, pp. 295-307
-
-
Chebrolou, S.1
Abraham, A.2
Thomas, J.P.3
-
11
-
-
80051793908
-
Data preprocessing for anomaly based network intrusion detection: a review
-
Davis J.J., Clark A.J. Data preprocessing for anomaly based network intrusion detection: a review. Comput. Secur. 2011, 30(6-7):353-375.
-
(2011)
Comput. Secur.
, vol.30
, Issue.6-7
, pp. 353-375
-
-
Davis, J.J.1
Clark, A.J.2
-
12
-
-
78650169163
-
The use of artificial intelligence based techniques for intrusion detection: a review
-
Kumar G., Kumar K., Sachdeva M. The use of artificial intelligence based techniques for intrusion detection: a review. Artif. Intell. Rev. 2010, 34(4):369-387.
-
(2010)
Artif. Intell. Rev.
, vol.34
, Issue.4
, pp. 369-387
-
-
Kumar, G.1
Kumar, K.2
Sachdeva, M.3
-
13
-
-
85167528504
-
-
Syngress Publishing, Inc, Rockland
-
Beale J., Foster J.C., Posluns J. Snort 2.0 Intrusion Detection 2003, Syngress Publishing, Inc, Rockland.
-
(2003)
Snort 2.0 Intrusion Detection
-
-
Beale, J.1
Foster, J.C.2
Posluns, J.3
-
14
-
-
70350134739
-
The use of computational intelligence in intrusion detection systems: a review
-
Wu S.X., Banzhaf W. The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 2010, 10(2):1-35.
-
(2010)
Appl. Soft Comput.
, vol.10
, Issue.2
, pp. 1-35
-
-
Wu, S.X.1
Banzhaf, W.2
-
15
-
-
33750514606
-
Modeling intrusion detection system using hybrid intelligent systems
-
Peddabachigari P., Abraham A., Grosan C., Thomas J. Modeling intrusion detection system using hybrid intelligent systems. J. Network Comput. Appl. 2007, 30(1):114-132.
-
(2007)
J. Network Comput. Appl.
, vol.30
, Issue.1
, pp. 114-132
-
-
Peddabachigari, P.1
Abraham, A.2
Grosan, C.3
Thomas, J.4
-
16
-
-
79960130343
-
A rough set based decision tree algorithm and its application in intrusion detection pattern recognition and machine intelligence
-
Zhou L., Jiang F. A rough set based decision tree algorithm and its application in intrusion detection pattern recognition and machine intelligence. Lect. Notes Comput. Sci. 2011, 6744/2011:333-338.
-
(2011)
Lect. Notes Comput. Sci.
, pp. 333-338
-
-
Zhou, L.1
Jiang, F.2
-
17
-
-
34347379313
-
Using data mining techniques to predict industrial wine problem fermentations
-
Urtubia A., Perez-Correa J.R., Soto A., Pszczolkowski P. Using data mining techniques to predict industrial wine problem fermentations. Food Control 2007, 18(1):1512-1517.
-
(2007)
Food Control
, vol.18
, Issue.1
, pp. 1512-1517
-
-
Urtubia, A.1
Perez-Correa, J.R.2
Soto, A.3
Pszczolkowski, P.4
-
18
-
-
0003506109
-
-
Prentice Hall, Upper Saddle River, NJ
-
Hair J., Black W., Babin B., Anderson R., Tatham R. Multivariate Data Analysis 2006, Prentice Hall, Upper Saddle River, NJ.
-
(2006)
Multivariate Data Analysis
-
-
Hair, J.1
Black, W.2
Babin, B.3
Anderson, R.4
Tatham, R.5
-
19
-
-
78651365104
-
A survey of partition based clustering algorithms in data mining: an experimental approach
-
Velmurugan T., Santhanam T. A survey of partition based clustering algorithms in data mining: an experimental approach. Inf. Technol. J. 2011, 10(3):478-484.
-
(2011)
Inf. Technol. J.
, vol.10
, Issue.3
, pp. 478-484
-
-
Velmurugan, T.1
Santhanam, T.2
-
20
-
-
0021583718
-
FCM: the fuzzy c-means clustering algorithm
-
Bezdek J.C., Ehrlich R., Full W. FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10(2-3):191-203.
-
(1984)
Comput. Geosci.
, vol.10
, Issue.2-3
, pp. 191-203
-
-
Bezdek, J.C.1
Ehrlich, R.2
Full, W.3
-
22
-
-
0037832491
-
-
The 12th IEEE International Conference on, vol. 2, 25-28 May 2003.
-
H. Shah, J. Undercoffer, A. Joshi, Fuzzy clustering for intrusion detection, Fuzzy systems, 2003. FUZZ '03, in: The 12th IEEE International Conference on, vol. 2, pp. 1274-1278 vol. 2, 25-28 May 2003.
-
A. Joshi, Fuzzy clustering for intrusion detection, Fuzzy systems, 2003. FUZZ '03
, vol.2
, pp. 1274-1278
-
-
Shah, H.1
Undercoffer, J.2
-
23
-
-
77953128244
-
Semi-supervised outlier detection based on fuzzy rough C-means clustering
-
Xue Z., Shang Y., Feng A. Semi-supervised outlier detection based on fuzzy rough C-means clustering. Math. Comput. Simul 2010, 80(9):1911-1921.
-
(2010)
Math. Comput. Simul
, vol.80
, Issue.9
, pp. 1911-1921
-
-
Xue, Z.1
Shang, Y.2
Feng, A.3
-
24
-
-
70349319868
-
Approximate distributed k-means clustering over a peer-to-peer network
-
Datta S., Giannella C.R., Kargupta H. Approximate distributed k-means clustering over a peer-to-peer network. IEEE Trans. Knowl. Data Eng. 2009, 21(10):1372-1388.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.10
, pp. 1372-1388
-
-
Datta, S.1
Giannella, C.R.2
Kargupta, H.3
-
25
-
-
0141540496
-
-
Computer Engineering, Montreal, Quebec, Canada
-
Y. Guan, A.A. Ghorbani, N. Belacel, Y-means: a clustering method for intrusion detection, in: Canadian Conference on Electrical and Computer Engineering, Montreal, Quebec, Canada, 2003, pp. 1-4.
-
(2003)
Y-means: a clustering method for intrusion detection, in: Canadian Conference on Electrical and
, pp. 1-4
-
-
Guan, Y.1
Ghorbani, A.A.2
Belacel, N.3
-
26
-
-
0041473688
-
Intrusion detection techniques for mobile
-
Zhang Y., Lee W., Huang Y. Intrusion detection techniques for mobile. Wireless Networks, Wireless Networks 2003, 9(5):545-556.
-
(2003)
Wireless Networks, Wireless Networks
, vol.9
, Issue.5
, pp. 545-556
-
-
Zhang, Y.1
Lee, W.2
Huang, Y.3
-
27
-
-
33745163595
-
Learning intrusion detection: supervised or unsupervised?
-
Laskov P., Dussel P., Schafer C., Rieck K. Learning intrusion detection: supervised or unsupervised?. Image Anal. Process.-ICIAP 2005 2005, 3617:50-57.
-
(2005)
Image Anal. Process.-ICIAP 2005
, vol.3617
, pp. 50-57
-
-
Laskov, P.1
Dussel, P.2
Schafer, C.3
Rieck, K.4
-
28
-
-
33847406678
-
A hierarchical intrusion detection model based on the PCA neural networks
-
Liu G., Li Z., Yang S. A hierarchical intrusion detection model based on the PCA neural networks. Neurocomputing 2007, 70(7-9):1561-1568.
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1561-1568
-
-
Liu, G.1
Li, Z.2
Yang, S.3
-
29
-
-
84876731442
-
-
Q learning algorithm, Neurocomputing
-
N. Sengupta, J. Sen, J. Sil, M. Saha, Designing of an online intrusion detection system using rough set theory and Q learning algorithm, Neurocomputing 111 (2013) 161-168.
-
(2013)
M. Saha, Designing of an online intrusion detection system using rough set theory and
, vol.111
, pp. 61-168
-
-
Sengupta, N.1
Sen, J.2
Sil, J.3
-
30
-
-
56549097799
-
High-order Markov kernals for intrusion detection
-
Yin C., Tian S., Mu S. High-order Markov kernals for intrusion detection. Neurocomputing 2008, 71(16-18):3247-3253.
-
(2008)
Neurocomputing
, vol.71
, Issue.16-18
, pp. 3247-3253
-
-
Yin, C.1
Tian, S.2
Mu, S.3
-
31
-
-
77956574602
-
-
Using Bayesian networks for cyber security analysis, in: International Conference on Dependable Systems and Networks, 28 June-1 July 2010
-
P. Xie, J.H. Li, X. Ou, P. Liu, R. Levy, Using Bayesian networks for cyber security analysis, in: International Conference on Dependable Systems and Networks, 28 June-1 July 2010, pp. 211-220. 2010.
-
(2010)
, pp. 211-220
-
-
Xie, P.1
Li, J.H.2
Ou, X.3
Liu, P.4
Levy, R.5
-
32
-
-
84944737204
-
-
C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classification for intrusion detection, in: Computer Security Applications Conference, 2003. Proceedings. 19th Annual 8-12 Dec. 2003, pp. 14-23.
-
(2003)
Bayesian event classification for intrusion detection, in: Computer Security Applications Conference, 2003. Proceedings. 19th Annual 8-12 Dec
, pp. 14-23
-
-
Kruegel, C.1
Mutz, D.2
Robertson, W.3
Valeur, F.4
-
33
-
-
57849130705
-
Anomaly-based network intrusion detection: techniques, systems and challenges
-
García-Teodoro P., Díaz-Verdejo J., Maciá-Fernández G., Vázquez E. Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 2009, 28(1-2):18-28.
-
(2009)
Comput. Secur.
, vol.28
, Issue.1-2
, pp. 18-28
-
-
García-Teodoro, P.1
Díaz-Verdejo, J.2
Maciá-Fernández, G.3
Vázquez, E.4
-
34
-
-
84884206188
-
-
Naïve Bayes. vs. decision trees, in: Symposium on Applied Computing Proceedings of the 2004 ACM Symposium on Applied Computing
-
N. Ben Amor, A. Benferhat Rue, Z. Elouedi, Naïve Bayes. vs. decision trees, in: Symposium on Applied Computing Proceedings of the 2004 ACM Symposium on Applied Computing, 2004.
-
(2004)
-
-
Ben Amor, N.1
Benferhat Rue, A.2
Elouedi, Z.3
-
35
-
-
77951605944
-
-
Proceedings of the 2009 International Conference on Industrial and Information Systems (ICIIS), Sri Lanka, December 2009
-
U. Premaratne, C. Ling, J. Samarabandu, T. Sidhu, Possibilistic decision trees for intrusion detection in IEC61850 automated substations, in: Proceedings of the 2009 International Conference on Industrial and Information Systems (ICIIS), Sri Lanka, December 2009, pp. 204-209.
-
Possibilistic decision trees for intrusion detection in IEC61850 automated substations
, pp. 204-209
-
-
Premaratne, U.1
Ling, C.2
Samarabandu, J.3
Sidhu, T.4
-
36
-
-
84861100535
-
Multi-class pattern classification using single, multi-dimensional feature-space feature extraction evolved by multi-objective genetic programming and its application to network intrusion detection
-
Badran K., Rockett P. Multi-class pattern classification using single, multi-dimensional feature-space feature extraction evolved by multi-objective genetic programming and its application to network intrusion detection. Genet. Program. Evol. Mach. 2012, 13(1):33-36.
-
(2012)
Genet. Program. Evol. Mach.
, vol.13
, Issue.1
, pp. 33-36
-
-
Badran, K.1
Rockett, P.2
-
37
-
-
84883271942
-
-
Selecting features for intrusion detection: a feature relevance analysis on KDD99 intrusion detection data sets, in: Proceedings of the Third Annual Conference on Privacy, Security and Trust, Halifax, NS, Canada, October
-
H.G. Kayacik, A.N.Z. Heywood, M.I. Heywood, Selecting features for intrusion detection: a feature relevance analysis on KDD99 intrusion detection data sets, in: Proceedings of the Third Annual Conference on Privacy, Security and Trust, Halifax, NS, Canada, October 2005.
-
(2005)
-
-
Kayacik, H.G.1
Heywood, A.N.Z.2
Heywood, M.I.3
-
38
-
-
79953811849
-
A survey of outlier detection methods in network anomaly identification
-
Prasanta G., Bhattacharyya D.K., Borah B., Kalita J.K. A survey of outlier detection methods in network anomaly identification. Comput. J. 2011, 54(4):570-588.
-
(2011)
Comput. J.
, vol.54
, Issue.4
, pp. 570-588
-
-
Prasanta, G.1
Bhattacharyya, D.K.2
Borah, B.3
Kalita, J.K.4
-
39
-
-
33644686999
-
Optimization-based feature selection with adaptive instance sampling
-
Yang J., Olafsson S. Optimization-based feature selection with adaptive instance sampling,. Comput. Oper. Res. 2006, 33(11):3088-3106.
-
(2006)
Comput. Oper. Res.
, vol.33
, Issue.11
, pp. 3088-3106
-
-
Yang, J.1
Olafsson, S.2
-
40
-
-
68849131508
-
A wrapper method for feature selection in multiple classes datasets, bio-inspired systems: computational and ambient intelligence
-
Sánchez-Maroño N., Alonso-Betanzos A., Calvo-Estévez R. A wrapper method for feature selection in multiple classes datasets, bio-inspired systems: computational and ambient intelligence. Lect. Notes Comput. Sci. 2009, 5517:456-463.
-
(2009)
Lect. Notes Comput. Sci.
, vol.5517
, pp. 456-463
-
-
Sánchez-Maroño, N.1
Alonso-Betanzos, A.2
Calvo-Estévez, R.3
-
41
-
-
68949161842
-
A triangle area based nearest neighbors approach to intrusion detection
-
Tsai C., Lin C. A triangle area based nearest neighbors approach to intrusion detection. Pattern Recognit. 2010, 3(1):222-229.
-
(2010)
Pattern Recognit.
, vol.3
, Issue.1
, pp. 222-229
-
-
Tsai, C.1
Lin, C.2
-
42
-
-
34249896701
-
Clustering based intrusion detection
-
Zhong S., Khoshgoftaar T.M., Seliya N. Clustering based intrusion detection,. Int. J. Reliab. Qual. Saf. Eng. 2007, 14(2):169-187.
-
(2007)
Int. J. Reliab. Qual. Saf. Eng.
, vol.14
, Issue.2
, pp. 169-187
-
-
Zhong, S.1
Khoshgoftaar, T.M.2
Seliya, N.3
-
43
-
-
84884206356
-
-
Intrusion Detection with Unlabeled Data Using Clustering, in ACM Workshop on Data Mining Applied to Security (Philadelphia, PA)
-
L. Portnoy, E. Eskin, S. Stolfo, Intrusion Detection with Unlabeled Data Using Clustering, in ACM Workshop on Data Mining Applied to Security (Philadelphia, PA), 2001).
-
(2001)
-
-
Portnoy, L.1
Eskin, E.2
Stolfo, S.3
-
44
-
-
33847704184
-
K-Means+ID3: A novel method for supervised anomaly detection by cascading K-means clustering and ID3 decision tree learning methods
-
Gaddam S.R., Phoha V.V., Balagani K.S. k-Means+ID3: A novel method for supervised anomaly detection by cascading K-means clustering and ID3 decision tree learning methods,. IEEE Trans. Knowl. Data Eng. 2007, 19(3):345-354.
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, Issue.3
, pp. 345-354
-
-
Gaddam, S.R.1
Phoha, V.V.2
Balagani, K.S.3
-
46
-
-
84884208652
-
-
DARPA. Available online at
-
DARPA. Available online at: 1999. http://www.ll.mit.edu/mission/%20communications/ist/corpora/ideval/data/ index.html.
-
(1999)
-
-
-
47
-
-
85019691440
-
Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln Laboratory
-
McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln Laboratory. ACM Trans. Inform. Syst. Secur. 2000, 3(4).
-
(2000)
ACM Trans. Inform. Syst. Secur.
, vol.3
, Issue.4
-
-
McHugh, J.1
-
48
-
-
84884203327
-
-
An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection, Technical Report CS-2003-02
-
M.V. Mahoney, P.K. Chan, An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection, Technical Report CS-2003-02, 2003.
-
(2003)
-
-
Mahoney, M.V.1
Chan, P.K.2
-
49
-
-
34547969527
-
The new front line: Estonia under Cyberassault
-
Lesk M. The new front line: Estonia under Cyberassault. IEEE Secur. Privacy 2007, 5(4):76-79.
-
(2007)
IEEE Secur. Privacy
, vol.5
, Issue.4
, pp. 76-79
-
-
Lesk, M.1
-
50
-
-
84884206889
-
-
Metasploit Framework, 2013 [online]. [Accessed: 28th February, 2013]. Available from
-
Metasploit Framework, 2013 [online]. [Accessed: 28th February, 2013]. Available from: . http://www.metasploit.com.
-
-
-
-
51
-
-
67049149448
-
-
University of Minnesota, Tech. rep. 07-017, Computer Science Department
-
Chandola V., Banerjee A., Kumar V. Anomaly detection: a survey 2007, University of Minnesota, Tech. rep. 07-017, Computer Science Department.
-
(2007)
Anomaly detection: a survey
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
52
-
-
0001457509
-
-
Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability
-
J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281-297.
-
(1967)
, pp. 281-297
-
-
MacQueen, J.B.1
-
53
-
-
77950369345
-
Data clustering: 50 years beyond k-means
-
Jain A.K. Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 2010, 31(8):651-666.
-
(2010)
Pattern Recognit. Lett.
, vol.31
, Issue.8
, pp. 651-666
-
-
Jain, A.K.1
-
54
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X., Kumar V., Quinlan J.R., Ghosh J., Yang A., Motoda Y., McLachlan G.J., Ng A., Liu B., Yu P.S. Top 10 algorithms in data mining. Knowledge Inf. Syst. 2008, 14(1):1-37.
-
(2008)
Knowledge Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, A.5
Motoda, Y.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
-
56
-
-
0037507339
-
Constructing a multi-valued and multi-labeled decision tree
-
Chen Y., Hsu C., Chou S. Constructing a multi-valued and multi-labeled decision tree. Expert Syst. Appl. 2003, 25(2):199-209.
-
(2003)
Expert Syst. Appl.
, vol.25
, Issue.2
, pp. 199-209
-
-
Chen, Y.1
Hsu, C.2
Chou, S.3
-
58
-
-
0002442571
-
Discovering rules by induction from large collections of examples
-
Edinburgh University Press, Edinburgh, D. Michie (Ed.)
-
Quinlan J.R. Discovering rules by induction from large collections of examples. Expert Systems in the Micro Electronic Age 1979, Edinburgh University Press, Edinburgh. D. Michie (Ed.).
-
(1979)
Expert Systems in the Micro Electronic Age
-
-
Quinlan, J.R.1
-
59
-
-
77953620856
-
A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning methods
-
Yasami Y., Mozaffari S.P. A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning methods. J. Supercomput. 2010, 53(1):231-245.
-
(2010)
J. Supercomput.
, vol.53
, Issue.1
, pp. 231-245
-
-
Yasami, Y.1
Mozaffari, S.P.2
-
60
-
-
84876487674
-
A constrained evolutionary computation method for detecting controlling regions of cortical networks
-
Tang Y., Wang Z., Gao H., Swift S., Kurths J. A constrained evolutionary computation method for detecting controlling regions of cortical networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 2012, 9(6):1569-1581.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.6
, pp. 1569-1581
-
-
Tang, Y.1
Wang, Z.2
Gao, H.3
Swift, S.4
Kurths, J.5
-
61
-
-
84865018078
-
Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements
-
Hu J., Wang Z., Gao H., Stergioulas L.K. Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements. Automatica 2012, 48(9):2007-2015.
-
(2012)
Automatica
, vol.48
, Issue.9
, pp. 2007-2015
-
-
Hu, J.1
Wang, Z.2
Gao, H.3
Stergioulas, L.K.4
-
62
-
-
84861171805
-
Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts
-
Dong H., Wang Z., Gao H. Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts. IEEE Trans. Signal Process. 2012, 60(6):3164-3173.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.6
, pp. 3164-3173
-
-
Dong, H.1
Wang, Z.2
Gao, H.3
|