메뉴 건너뛰기




Volumn 121, Issue , 2013, Pages 265-273

Effects-based feature identification for network intrusion detection

Author keywords

Classification; Clustering; Decision trees; Feature selection; Intrusion detection

Indexed keywords

C4.5 DECISION TREES; CLUSTERING; FEATURE IDENTIFICATION; HIGH DEGREE OF ACCURACY; INTRUSION DETECTION SYSTEMS; K-MEANS CLUSTERING; NETWORK INTRUSION DETECTION; SITUATIONAL AWARENESS;

EID: 84884207884     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.04.038     Document Type: Article
Times cited : (90)

References (62)
  • 1
    • 77952893307 scopus 로고    scopus 로고
    • Cyber-threat proliferation: today's truly pervasive global epidemic
    • Kellerman T. Cyber-threat proliferation: today's truly pervasive global epidemic. IEEE Secur. Privacy 2010, 8(3):70-73.
    • (2010) IEEE Secur. Privacy , vol.8 , Issue.3 , pp. 70-73
    • Kellerman, T.1
  • 2
    • 79960062556 scopus 로고    scopus 로고
    • Cyber wars: a paradigm shift from means to ends
    • Sharma A. Cyber wars: a paradigm shift from means to ends. Strategic Anal. 2010, 34(1):62-73.
    • (2010) Strategic Anal. , vol.34 , Issue.1 , pp. 62-73
    • Sharma, A.1
  • 3
    • 77956297467 scopus 로고    scopus 로고
    • The profession of IT: discussing cyber attack
    • Denning P.J., Denning D.E. The profession of IT: discussing cyber attack. Commun. ACM 2010, 53(9):29-31.
    • (2010) Commun. ACM , vol.53 , Issue.9 , pp. 29-31
    • Denning, P.J.1    Denning, D.E.2
  • 4
    • 63049137706 scopus 로고    scopus 로고
    • Information security: the moving target
    • Dlamini M., Eloff J.H.P., Eloff M.M. Information security: the moving target. Comput. Secur. 2009, 28(3-4):189-198.
    • (2009) Comput. Secur. , vol.28 , Issue.3-4 , pp. 189-198
    • Dlamini, M.1    Eloff, J.H.P.2    Eloff, M.M.3
  • 5
    • 27644509266 scopus 로고    scopus 로고
    • Intrusion detection systems and intrusion prevention systems
    • Fuchsberger A. Intrusion detection systems and intrusion prevention systems. Inf. Secur. Tech. Rep. 2005, 10:134-139.
    • (2005) Inf. Secur. Tech. Rep. , vol.10 , pp. 134-139
    • Fuchsberger, A.1
  • 6
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: existing solutions and latest technological trends
    • Patcha A., Park J.-M. An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Networks 2007, 51(12):3448-3470.
    • (2007) Comput. Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 7
    • 80455177941 scopus 로고    scopus 로고
    • Towards cyber defense: research in intrusion detection and intrusion prevention systems
    • Faysel M.A., Haque S.S. Towards cyber defense: research in intrusion detection and intrusion prevention systems. IJCSNS 2010, 10(7):316-325.
    • (2010) IJCSNS , vol.10 , Issue.7 , pp. 316-325
    • Faysel, M.A.1    Haque, S.S.2
  • 9
    • 67649726426 scopus 로고    scopus 로고
    • Building lightweight intrusion detection system using wrapper-based feature selection mechanisms
    • Li Y., Wang J., Tian Z., Luc T., Young C. Building lightweight intrusion detection system using wrapper-based feature selection mechanisms. Comput. Secur. 2009, 28(6):466-475.
    • (2009) Comput. Secur. , vol.28 , Issue.6 , pp. 466-475
    • Li, Y.1    Wang, J.2    Tian, Z.3    Luc, T.4    Young, C.5
  • 10
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolou S., Abraham A., Thomas J.P. Feature deduction and ensemble design of intrusion detection systems. Comput. Secur. 2005, 25:295-307.
    • (2005) Comput. Secur. , vol.25 , pp. 295-307
    • Chebrolou, S.1    Abraham, A.2    Thomas, J.P.3
  • 11
    • 80051793908 scopus 로고    scopus 로고
    • Data preprocessing for anomaly based network intrusion detection: a review
    • Davis J.J., Clark A.J. Data preprocessing for anomaly based network intrusion detection: a review. Comput. Secur. 2011, 30(6-7):353-375.
    • (2011) Comput. Secur. , vol.30 , Issue.6-7 , pp. 353-375
    • Davis, J.J.1    Clark, A.J.2
  • 12
    • 78650169163 scopus 로고    scopus 로고
    • The use of artificial intelligence based techniques for intrusion detection: a review
    • Kumar G., Kumar K., Sachdeva M. The use of artificial intelligence based techniques for intrusion detection: a review. Artif. Intell. Rev. 2010, 34(4):369-387.
    • (2010) Artif. Intell. Rev. , vol.34 , Issue.4 , pp. 369-387
    • Kumar, G.1    Kumar, K.2    Sachdeva, M.3
  • 14
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: a review
    • Wu S.X., Banzhaf W. The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 2010, 10(2):1-35.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.2 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 15
  • 16
    • 79960130343 scopus 로고    scopus 로고
    • A rough set based decision tree algorithm and its application in intrusion detection pattern recognition and machine intelligence
    • Zhou L., Jiang F. A rough set based decision tree algorithm and its application in intrusion detection pattern recognition and machine intelligence. Lect. Notes Comput. Sci. 2011, 6744/2011:333-338.
    • (2011) Lect. Notes Comput. Sci. , pp. 333-338
    • Zhou, L.1    Jiang, F.2
  • 17
    • 34347379313 scopus 로고    scopus 로고
    • Using data mining techniques to predict industrial wine problem fermentations
    • Urtubia A., Perez-Correa J.R., Soto A., Pszczolkowski P. Using data mining techniques to predict industrial wine problem fermentations. Food Control 2007, 18(1):1512-1517.
    • (2007) Food Control , vol.18 , Issue.1 , pp. 1512-1517
    • Urtubia, A.1    Perez-Correa, J.R.2    Soto, A.3    Pszczolkowski, P.4
  • 19
    • 78651365104 scopus 로고    scopus 로고
    • A survey of partition based clustering algorithms in data mining: an experimental approach
    • Velmurugan T., Santhanam T. A survey of partition based clustering algorithms in data mining: an experimental approach. Inf. Technol. J. 2011, 10(3):478-484.
    • (2011) Inf. Technol. J. , vol.10 , Issue.3 , pp. 478-484
    • Velmurugan, T.1    Santhanam, T.2
  • 20
    • 0021583718 scopus 로고
    • FCM: the fuzzy c-means clustering algorithm
    • Bezdek J.C., Ehrlich R., Full W. FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10(2-3):191-203.
    • (1984) Comput. Geosci. , vol.10 , Issue.2-3 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 23
    • 77953128244 scopus 로고    scopus 로고
    • Semi-supervised outlier detection based on fuzzy rough C-means clustering
    • Xue Z., Shang Y., Feng A. Semi-supervised outlier detection based on fuzzy rough C-means clustering. Math. Comput. Simul 2010, 80(9):1911-1921.
    • (2010) Math. Comput. Simul , vol.80 , Issue.9 , pp. 1911-1921
    • Xue, Z.1    Shang, Y.2    Feng, A.3
  • 24
    • 70349319868 scopus 로고    scopus 로고
    • Approximate distributed k-means clustering over a peer-to-peer network
    • Datta S., Giannella C.R., Kargupta H. Approximate distributed k-means clustering over a peer-to-peer network. IEEE Trans. Knowl. Data Eng. 2009, 21(10):1372-1388.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.10 , pp. 1372-1388
    • Datta, S.1    Giannella, C.R.2    Kargupta, H.3
  • 28
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA neural networks
    • Liu G., Li Z., Yang S. A hierarchical intrusion detection model based on the PCA neural networks. Neurocomputing 2007, 70(7-9):1561-1568.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1561-1568
    • Liu, G.1    Li, Z.2    Yang, S.3
  • 30
    • 56549097799 scopus 로고    scopus 로고
    • High-order Markov kernals for intrusion detection
    • Yin C., Tian S., Mu S. High-order Markov kernals for intrusion detection. Neurocomputing 2008, 71(16-18):3247-3253.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3247-3253
    • Yin, C.1    Tian, S.2    Mu, S.3
  • 31
    • 77956574602 scopus 로고    scopus 로고
    • Using Bayesian networks for cyber security analysis, in: International Conference on Dependable Systems and Networks, 28 June-1 July 2010
    • P. Xie, J.H. Li, X. Ou, P. Liu, R. Levy, Using Bayesian networks for cyber security analysis, in: International Conference on Dependable Systems and Networks, 28 June-1 July 2010, pp. 211-220. 2010.
    • (2010) , pp. 211-220
    • Xie, P.1    Li, J.H.2    Ou, X.3    Liu, P.4    Levy, R.5
  • 34
    • 84884206188 scopus 로고    scopus 로고
    • Naïve Bayes. vs. decision trees, in: Symposium on Applied Computing Proceedings of the 2004 ACM Symposium on Applied Computing
    • N. Ben Amor, A. Benferhat Rue, Z. Elouedi, Naïve Bayes. vs. decision trees, in: Symposium on Applied Computing Proceedings of the 2004 ACM Symposium on Applied Computing, 2004.
    • (2004)
    • Ben Amor, N.1    Benferhat Rue, A.2    Elouedi, Z.3
  • 36
    • 84861100535 scopus 로고    scopus 로고
    • Multi-class pattern classification using single, multi-dimensional feature-space feature extraction evolved by multi-objective genetic programming and its application to network intrusion detection
    • Badran K., Rockett P. Multi-class pattern classification using single, multi-dimensional feature-space feature extraction evolved by multi-objective genetic programming and its application to network intrusion detection. Genet. Program. Evol. Mach. 2012, 13(1):33-36.
    • (2012) Genet. Program. Evol. Mach. , vol.13 , Issue.1 , pp. 33-36
    • Badran, K.1    Rockett, P.2
  • 37
    • 84883271942 scopus 로고    scopus 로고
    • Selecting features for intrusion detection: a feature relevance analysis on KDD99 intrusion detection data sets, in: Proceedings of the Third Annual Conference on Privacy, Security and Trust, Halifax, NS, Canada, October
    • H.G. Kayacik, A.N.Z. Heywood, M.I. Heywood, Selecting features for intrusion detection: a feature relevance analysis on KDD99 intrusion detection data sets, in: Proceedings of the Third Annual Conference on Privacy, Security and Trust, Halifax, NS, Canada, October 2005.
    • (2005)
    • Kayacik, H.G.1    Heywood, A.N.Z.2    Heywood, M.I.3
  • 38
    • 79953811849 scopus 로고    scopus 로고
    • A survey of outlier detection methods in network anomaly identification
    • Prasanta G., Bhattacharyya D.K., Borah B., Kalita J.K. A survey of outlier detection methods in network anomaly identification. Comput. J. 2011, 54(4):570-588.
    • (2011) Comput. J. , vol.54 , Issue.4 , pp. 570-588
    • Prasanta, G.1    Bhattacharyya, D.K.2    Borah, B.3    Kalita, J.K.4
  • 39
    • 33644686999 scopus 로고    scopus 로고
    • Optimization-based feature selection with adaptive instance sampling
    • Yang J., Olafsson S. Optimization-based feature selection with adaptive instance sampling,. Comput. Oper. Res. 2006, 33(11):3088-3106.
    • (2006) Comput. Oper. Res. , vol.33 , Issue.11 , pp. 3088-3106
    • Yang, J.1    Olafsson, S.2
  • 40
    • 68849131508 scopus 로고    scopus 로고
    • A wrapper method for feature selection in multiple classes datasets, bio-inspired systems: computational and ambient intelligence
    • Sánchez-Maroño N., Alonso-Betanzos A., Calvo-Estévez R. A wrapper method for feature selection in multiple classes datasets, bio-inspired systems: computational and ambient intelligence. Lect. Notes Comput. Sci. 2009, 5517:456-463.
    • (2009) Lect. Notes Comput. Sci. , vol.5517 , pp. 456-463
    • Sánchez-Maroño, N.1    Alonso-Betanzos, A.2    Calvo-Estévez, R.3
  • 41
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • Tsai C., Lin C. A triangle area based nearest neighbors approach to intrusion detection. Pattern Recognit. 2010, 3(1):222-229.
    • (2010) Pattern Recognit. , vol.3 , Issue.1 , pp. 222-229
    • Tsai, C.1    Lin, C.2
  • 43
    • 84884206356 scopus 로고    scopus 로고
    • Intrusion Detection with Unlabeled Data Using Clustering, in ACM Workshop on Data Mining Applied to Security (Philadelphia, PA)
    • L. Portnoy, E. Eskin, S. Stolfo, Intrusion Detection with Unlabeled Data Using Clustering, in ACM Workshop on Data Mining Applied to Security (Philadelphia, PA), 2001).
    • (2001)
    • Portnoy, L.1    Eskin, E.2    Stolfo, S.3
  • 44
    • 33847704184 scopus 로고    scopus 로고
    • K-Means+ID3: A novel method for supervised anomaly detection by cascading K-means clustering and ID3 decision tree learning methods
    • Gaddam S.R., Phoha V.V., Balagani K.S. k-Means+ID3: A novel method for supervised anomaly detection by cascading K-means clustering and ID3 decision tree learning methods,. IEEE Trans. Knowl. Data Eng. 2007, 19(3):345-354.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.3 , pp. 345-354
    • Gaddam, S.R.1    Phoha, V.V.2    Balagani, K.S.3
  • 46
    • 84884208652 scopus 로고    scopus 로고
    • DARPA. Available online at
    • DARPA. Available online at: 1999. http://www.ll.mit.edu/mission/%20communications/ist/corpora/ideval/data/ index.html.
    • (1999)
  • 47
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln Laboratory
    • McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln Laboratory. ACM Trans. Inform. Syst. Secur. 2000, 3(4).
    • (2000) ACM Trans. Inform. Syst. Secur. , vol.3 , Issue.4
    • McHugh, J.1
  • 48
    • 84884203327 scopus 로고    scopus 로고
    • An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection, Technical Report CS-2003-02
    • M.V. Mahoney, P.K. Chan, An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection, Technical Report CS-2003-02, 2003.
    • (2003)
    • Mahoney, M.V.1    Chan, P.K.2
  • 49
    • 34547969527 scopus 로고    scopus 로고
    • The new front line: Estonia under Cyberassault
    • Lesk M. The new front line: Estonia under Cyberassault. IEEE Secur. Privacy 2007, 5(4):76-79.
    • (2007) IEEE Secur. Privacy , vol.5 , Issue.4 , pp. 76-79
    • Lesk, M.1
  • 50
    • 84884206889 scopus 로고    scopus 로고
    • Metasploit Framework, 2013 [online]. [Accessed: 28th February, 2013]. Available from
    • Metasploit Framework, 2013 [online]. [Accessed: 28th February, 2013]. Available from: . http://www.metasploit.com.
  • 52
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability
    • J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281-297.
    • (1967) , pp. 281-297
    • MacQueen, J.B.1
  • 53
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain A.K. Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 2010, 31(8):651-666.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 56
    • 0037507339 scopus 로고    scopus 로고
    • Constructing a multi-valued and multi-labeled decision tree
    • Chen Y., Hsu C., Chou S. Constructing a multi-valued and multi-labeled decision tree. Expert Syst. Appl. 2003, 25(2):199-209.
    • (2003) Expert Syst. Appl. , vol.25 , Issue.2 , pp. 199-209
    • Chen, Y.1    Hsu, C.2    Chou, S.3
  • 58
    • 0002442571 scopus 로고
    • Discovering rules by induction from large collections of examples
    • Edinburgh University Press, Edinburgh, D. Michie (Ed.)
    • Quinlan J.R. Discovering rules by induction from large collections of examples. Expert Systems in the Micro Electronic Age 1979, Edinburgh University Press, Edinburgh. D. Michie (Ed.).
    • (1979) Expert Systems in the Micro Electronic Age
    • Quinlan, J.R.1
  • 59
    • 77953620856 scopus 로고    scopus 로고
    • A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning methods
    • Yasami Y., Mozaffari S.P. A novel unsupervised classification approach for network anomaly detection by k-means clustering and ID3 decision tree learning methods. J. Supercomput. 2010, 53(1):231-245.
    • (2010) J. Supercomput. , vol.53 , Issue.1 , pp. 231-245
    • Yasami, Y.1    Mozaffari, S.P.2
  • 60
    • 84876487674 scopus 로고    scopus 로고
    • A constrained evolutionary computation method for detecting controlling regions of cortical networks
    • Tang Y., Wang Z., Gao H., Swift S., Kurths J. A constrained evolutionary computation method for detecting controlling regions of cortical networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 2012, 9(6):1569-1581.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , Issue.6 , pp. 1569-1581
    • Tang, Y.1    Wang, Z.2    Gao, H.3    Swift, S.4    Kurths, J.5
  • 61
    • 84865018078 scopus 로고    scopus 로고
    • Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements
    • Hu J., Wang Z., Gao H., Stergioulas L.K. Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements. Automatica 2012, 48(9):2007-2015.
    • (2012) Automatica , vol.48 , Issue.9 , pp. 2007-2015
    • Hu, J.1    Wang, Z.2    Gao, H.3    Stergioulas, L.K.4
  • 62
    • 84861171805 scopus 로고    scopus 로고
    • Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts
    • Dong H., Wang Z., Gao H. Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts. IEEE Trans. Signal Process. 2012, 60(6):3164-3173.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.6 , pp. 3164-3173
    • Dong, H.1    Wang, Z.2    Gao, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.