-
1
-
-
84904137191
-
Network intrusion detection system based on machine learning algorithms
-
[1] Das, V., Pathak, V., Sharma, S., Sreevathsan, R., Srikanth, M., Kumar, G., Network intrusion detection system based on machine learning algorithms. Int. J. Comput. Sci. Inf. Technol. 2 (2010), 138–151, 10.1016/j.asoc.2009.06.019.
-
(2010)
Int. J. Comput. Sci. Inf. Technol.
, vol.2
, pp. 138-151
-
-
Das, V.1
Pathak, V.2
Sharma, S.3
Sreevathsan, R.4
Srikanth, M.5
Kumar, G.6
-
2
-
-
58349096877
-
Data mining-based intrusion detectors
-
[2] Wu, S., Yen, E., Data mining-based intrusion detectors. Expert Syst. Appl. 36 (2009), 5605–5612, 10.1016/j.eswa.2008.06.138.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 5605-5612
-
-
Wu, S.1
Yen, E.2
-
3
-
-
74149086366
-
On the symbiosis of specification-based and anomaly-based detection
-
[3] Stakhanova, N., Basu, S., Wong, J., On the symbiosis of specification-based and anomaly-based detection. Comput. Secur. 29 (2010), 253–268, 10.1016/j.cose.2009.08.007.
-
(2010)
Comput. Secur.
, vol.29
, pp. 253-268
-
-
Stakhanova, N.1
Basu, S.2
Wong, J.3
-
4
-
-
84970912506
-
An efficient hybrid intrusion detection system based on C5.0 and SVM
-
[4] Golmah, V., An efficient hybrid intrusion detection system based on C5.0 and SVM. Int. J. Database Theory Appl. 7 (2014), 59–70, 10.14257/ijdta.2014.7.2.06.
-
(2014)
Int. J. Database Theory Appl.
, vol.7
, pp. 59-70
-
-
Golmah, V.1
-
5
-
-
84888315965
-
A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
-
[5] Kim, G., Lee, S., Kim, S., A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Syst. Appl. 41 (2014), 1690–1700, 10.1016/j.eswa.2013.08.066.
-
(2014)
Expert Syst. Appl.
, vol.41
, pp. 1690-1700
-
-
Kim, G.1
Lee, S.2
Kim, S.3
-
6
-
-
84994857846
-
Artificial neural network models for intrusion detection,
-
[6] M. Sheikhan, Artificial neural network models for intrusion detection, in: Encyclopedia of Information Assurance, Taylor & Francis, New York, 2014, pp. 1–12, http://dx.doi.org/10.1081/E-EIA-120051983.
-
(2014)
Encyclopedia of Information Assurance, Taylor & Francis, New York
, pp. 1-12
-
-
Sheikhan, M.1
-
7
-
-
70350134739
-
The use of computational intelligence in intrusion detection systems: a review
-
[7] Wu, S.X., Banzhaf, W., The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 10 (2010), 1–35, 10.1016/j.asoc.2009.06.019.
-
(2010)
Appl. Soft Comput.
, vol.10
, pp. 1-35
-
-
Wu, S.X.1
Banzhaf, W.2
-
8
-
-
36549085110
-
An active learning based TCM-KNN algorithm for supervised network intrusion detection
-
[8] Y., Li, L., Guo, An active learning based TCM-KNN algorithm for supervised network intrusion detection. Comput. Secur. 26 (2007), 459–467, 10.1016/j.cose.2007.10.002.
-
(2007)
Comput. Secur.
, vol.26
, pp. 459-467
-
-
Y, L.1
L, G.2
-
9
-
-
84888391834
-
-
Available on, (accessed 20.02.15)
-
[9] KDD Cup 99 Intrusion detection data set, Available on 〈http://kdd.ics.uci.edu/databases/kddcup99〉, (accessed 20.02.15).
-
KDD Cup 99 Intrusion detection data set
-
-
-
10
-
-
79951581599
-
Incremental SVM based on reserved set for network intrusion detection
-
[10] Yi, Y., Wu, J., Xu, W., Incremental SVM based on reserved set for network intrusion detection. Expert Syst. Appl. 38 (2011), 7698–7707, 10.1016/j.eswa.2010.12.141.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 7698-7707
-
-
Yi, Y.1
Wu, J.2
Xu, W.3
-
11
-
-
84946616003
-
Normalized residual-based constant false-alarm rate outlier detection
-
[11] Ru, X., Liu, Z., Huang, Z., Jiang, W., Normalized residual-based constant false-alarm rate outlier detection. Pattern Recognit. Lett. 69 (2016), 1–7, 10.1016/j.patrec.2015.10.002.
-
(2016)
Pattern Recognit. Lett.
, vol.69
, pp. 1-7
-
-
Ru, X.1
Liu, Z.2
Huang, Z.3
Jiang, W.4
-
12
-
-
84900803761
-
Ellipsoidal neighbourhood outlier factor for distributed anomaly detection in resource constrained networks
-
[12] Rajasegarar, S., Gluhak, A., Imran, M.A., Nati, M., Moshtaghi, M., Leckie, C., Palaniswami, M., Ellipsoidal neighbourhood outlier factor for distributed anomaly detection in resource constrained networks. Pattern Recognit. 47 (2014), 2867–2879, 10.1016/j.patcog.2014.04.006.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 2867-2879
-
-
Rajasegarar, S.1
Gluhak, A.2
Imran, M.A.3
Nati, M.4
Moshtaghi, M.5
Leckie, C.6
Palaniswami, M.7
-
13
-
-
77953128244
-
Semi-supervised outlier detection based on fuzzy rough C-means clustering
-
[13] Xue, Z., Shang, Y., Feng, A., Semi-supervised outlier detection based on fuzzy rough C-means clustering. Math. Comput. Simul. 80 (2010), 1911–1921, 10.1016/j.matcom.2010.02.007.
-
(2010)
Math. Comput. Simul.
, vol.80
, pp. 1911-1921
-
-
Xue, Z.1
Shang, Y.2
Feng, A.3
-
14
-
-
84905002847
-
Entropy-based outlier detection using semi-supervised approach with few positive examples
-
[14] Daneshpazhouh, A., Sami, A., Entropy-based outlier detection using semi-supervised approach with few positive examples. Pattern Recognit. Lett. 49 (2014), 77–84, 10.1016/j.patrec.2014.06.012.
-
(2014)
Pattern Recognit. Lett.
, vol.49
, pp. 77-84
-
-
Daneshpazhouh, A.1
Sami, A.2
-
15
-
-
0037209446
-
Host-based intrusion detection using dynamic and static behavioral models
-
[15] Yeung, D.Y., Ding, Y., Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit. 36 (2003), 229–243, 10.1016/S0031-3203(02)00026-2.
-
(2003)
Pattern Recognit.
, vol.36
, pp. 229-243
-
-
Yeung, D.Y.1
Ding, Y.2
-
16
-
-
40849099949
-
Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees
-
[16] Xiang, C., Yong, P.C., Meng, L.S., Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognit. Lett. 29 (2008), 918–924, 10.1016/j.patrec.2008.01.008.
-
(2008)
Pattern Recognit. Lett.
, vol.29
, pp. 918-924
-
-
Xiang, C.1
Yong, P.C.2
Meng, L.S.3
-
17
-
-
84941079784
-
A new approach to intrusion detection using artificial neural networks and fuzzy clustering
-
[17] Wang, G., Hao, J., Ma, J., Huang, L., A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Syst. Appl. 37 (2010), 6225–6232, 10.1016/j.eswa.2010.02.102.
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 6225-6232
-
-
Wang, G.1
Hao, J.2
Ma, J.3
Huang, L.4
-
18
-
-
84945936408
-
A novel SVM-kNN-PSO ensemble method for intrusion detection system
-
[18] Aburomman, A.A., Reaz, M.B.I., A novel SVM-kNN-PSO ensemble method for intrusion detection system. Appl. Soft Comput. 38 (2016), 360–372, 10.1016/j.asoc.2015.10.011.
-
(2016)
Appl. Soft Comput.
, vol.38
, pp. 360-372
-
-
Aburomman, A.A.1
Reaz, M.B.I.2
-
19
-
-
67049156806
-
Supervised pattern classification based on optimum-path forest
-
[19] Papa, J.P., Falcão, A.X., Suzuki, C.T.N., Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19 (2009), 120–131.
-
(2009)
Int. J. Imaging Syst. Technol.
, vol.19
, pp. 120-131
-
-
Papa, J.P.1
Falcão, A.X.2
Suzuki, C.T.N.3
-
20
-
-
84872376322
-
Supervised learning using local analysis in an optimal-path forest,
-
[20] W.P. Amorim, M.H. Carvalho, Supervised learning using local analysis in an optimal-path forest, in: Proceedings of the 25th Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 2012, pp. 330–335. 10.1109/SIBGRAPI.2012.53.
-
(2012)
Proceedings of the 25th Conference on Graphics, Patterns and Images, Ouro Preto, Brazil
, pp. 330-335
-
-
Amorim, W.P.1
Carvalho, M.H.2
-
22
-
-
33644860127
-
A clustering-based method for unsupervised intrusion detections
-
[22] Jiang, S.Y., Song, X., Wang, H., Han, J.J., Li, Q.H., A clustering-based method for unsupervised intrusion detections. Pattern Recognit. Lett. 27 (2006), 802–810, 10.1016/j.patrec.2005.11.007.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, pp. 802-810
-
-
Jiang, S.Y.1
Song, X.2
Wang, H.3
Han, J.J.4
Li, Q.H.5
-
23
-
-
68949161842
-
A triangle area based nearest neighbors approach to intrusion detection
-
[23] Tsai, C.F., Lin, C.Y., A triangle area based nearest neighbors approach to intrusion detection. Pattern Recognit. 43 (2010), 222–229, 10.1016/j.patcog.2009.05.017.
-
(2010)
Pattern Recognit.
, vol.43
, pp. 222-229
-
-
Tsai, C.F.1
Lin, C.Y.2
-
24
-
-
84933183260
-
CANN: An intrusion detection system based on combining cluster centers and nearest neighbors
-
[24] Lin, W.C., Ke, S.W., Tsai, C.F., CANN: An intrusion detection system based on combining cluster centers and nearest neighbors. Knowl. Based Syst. 78 (2015), 13–21, 10.1016/j.knosys.2015.01.009.
-
(2015)
Knowl. Based Syst.
, vol.78
, pp. 13-21
-
-
Lin, W.C.1
Ke, S.W.2
Tsai, C.F.3
-
25
-
-
84864563699
-
An optimum-path forest framework for intrusion detection in computer networks
-
[25] Pereira, C.R., Nakamura, R.Y.M., Costa, K.A.P., Papa, J.P., An optimum-path forest framework for intrusion detection in computer networks. Eng. Appl. Artif. Intell. 25 (2012), 1226–1234, 10.1016/j.engappai.2012.03.008.
-
(2012)
Eng. Appl. Artif. Intell.
, vol.25
, pp. 1226-1234
-
-
Pereira, C.R.1
Nakamura, R.Y.M.2
Costa, K.A.P.3
Papa, J.P.4
-
26
-
-
80052699760
-
Efficient supervised optimum-path forest classification for large datasets
-
[26] Papa, J.P., Falcão, A.X., Albuquerque, V.H.C., Tavares, J.M.R.S., Efficient supervised optimum-path forest classification for large datasets. Pattern Recognit. 45 (2012), 512–520, 10.1016/j.patcog.2011.07.013.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 512-520
-
-
Papa, J.P.1
Falcão, A.X.2
Albuquerque, V.H.C.3
Tavares, J.M.R.S.4
-
27
-
-
84893595415
-
A path- and label-cost propagation approach to speed up the training of the optimum-path forest classifier
-
[27] Iwashita, A.S., Papa, J.P., Souza, A.N., Falcão, A.X., Lotufo, R.A., Oliveira, V.M., de Albuquerque, V.H.C., Tavare, J.M.R.S., A path- and label-cost propagation approach to speed up the training of the optimum-path forest classifier. Pattern Recognit. Lett. 40 (2014), 121–127, 10.1016/j.patrec.2013.12.018.
-
(2014)
Pattern Recognit. Lett.
, vol.40
, pp. 121-127
-
-
Iwashita, A.S.1
Papa, J.P.2
Souza, A.N.3
Falcão, A.X.4
Lotufo, R.A.5
Oliveira, V.M.6
de Albuquerque, V.H.C.7
Tavare, J.M.R.S.8
-
28
-
-
84893770802
-
A comparison between k-optimum path forest and k-nearest neighbors supervised classifiers
-
[28] Souza, R., Rittner, L., Lotufo, R., A comparison between k-optimum path forest and k-nearest neighbors supervised classifiers. Pattern Recognit. Lett. 39 (2014), 2–10, 10.1016/j.patrec.2013.08.030.
-
(2014)
Pattern Recognit. Lett.
, vol.39
, pp. 2-10
-
-
Souza, R.1
Rittner, L.2
Lotufo, R.3
-
29
-
-
84937812382
-
Robust active learning for the diagnosis of parasites
-
[29] Saito, P.T.M., Suzuki, C.T.N., Gomes, J.F., de Rezende, P.J., Falcão, A.X., Robust active learning for the diagnosis of parasites. Pattern Recognit. 48 (2015), 3572–3583, 10.1016/j.patcog.2015.05.020.
-
(2015)
Pattern Recognit.
, vol.48
, pp. 3572-3583
-
-
Saito, P.T.M.1
Suzuki, C.T.N.2
Gomes, J.F.3
de Rezende, P.J.4
Falcão, A.X.5
-
30
-
-
84961288567
-
A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks
-
[30] Costa, K.A.P., Pereira, L.A.M., Nakamura, R.Y.M., Pereira, C.R., Papa, J.P., Falcão, A.X., A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks. Inf. Sci. 294 (2015), 95–108, 10.1016/j.ins.2014.09.025.
-
(2015)
Inf. Sci.
, vol.294
, pp. 95-108
-
-
Costa, K.A.P.1
Pereira, L.A.M.2
Nakamura, R.Y.M.3
Pereira, C.R.4
Papa, J.P.5
Falcão, A.X.6
-
31
-
-
84940703285
-
Improving land cover classification through contextual-based optimum-path forest
-
[31] Osaku, D., Nakamura, R.Y.M., Pereira, L.A.M., Pisani, R.J., Levada, A.L.M., Cappabianco, F.A.M., Falcão, A.X., Papa, J.P., Improving land cover classification through contextual-based optimum-path forest. Inf. Sci. 324 (2015), 60–87, 10.1016/j.ins.2015.06.020.
-
(2015)
Inf. Sci.
, vol.324
, pp. 60-87
-
-
Osaku, D.1
Nakamura, R.Y.M.2
Pereira, L.A.M.3
Pisani, R.J.4
Levada, A.L.M.5
Cappabianco, F.A.M.6
Falcão, A.X.7
Papa, J.P.8
-
32
-
-
84912573275
-
Social activity and structural centrality in online social networks
-
[32] Klein, A., Ahlf, H., Sharma, V., Social activity and structural centrality in online social networks. Telemat. Inform. 32 (2015), 321–332, 10.1016/j.tele.2014.09.008.
-
(2015)
Telemat. Inform.
, vol.32
, pp. 321-332
-
-
Klein, A.1
Ahlf, H.2
Sharma, V.3
-
33
-
-
84871423186
-
C-index: a weighted network node centrality measure for collaboration competence
-
[33] Yan, X., Zhai, L., Fan, W., C-index: a weighted network node centrality measure for collaboration competence. J. Informetr. 7 (2013), 223–239, 10.1016/j.joi.2012.11.004.
-
(2013)
J. Informetr.
, vol.7
, pp. 223-239
-
-
Yan, X.1
Zhai, L.2
Fan, W.3
-
34
-
-
84925387554
-
A novel centrality method for weighted networks based on the Kirchhoff polynomial
-
[34] Qi, X., Fuller, E., Luo, R., Zhang, C., A novel centrality method for weighted networks based on the Kirchhoff polynomial. Pattern Recognit. Lett. 58 (2015), 51–60, 10.1016/j.patrec.2015.02.007.
-
(2015)
Pattern Recognit. Lett.
, vol.58
, pp. 51-60
-
-
Qi, X.1
Fuller, E.2
Luo, R.3
Zhang, C.4
-
35
-
-
84946495610
-
Fuzzy-rough community in social networks
-
[35] Kundu, S., Pal, S.K., Fuzzy-rough community in social networks. Pattern Recognit. Lett. 67 (2015), 145–152, 10.1016/j.patrec.2015.02.005.
-
(2015)
Pattern Recognit. Lett.
, vol.67
, pp. 145-152
-
-
Kundu, S.1
Pal, S.K.2
-
36
-
-
84885398842
-
Optimal local community detection in social networks based on density drop of subgraphs
-
[36] Qi, X., Tang, W., Wu, Y., Guo, G., Fuller, E., Zhang, C.Q., Optimal local community detection in social networks based on density drop of subgraphs. Pattern Recognit. Lett. 36 (2014), 46–53, 10.1016/j.patrec.2013.09.008.
-
(2014)
Pattern Recognit. Lett.
, vol.36
, pp. 46-53
-
-
Qi, X.1
Tang, W.2
Wu, Y.3
Guo, G.4
Fuller, E.5
Zhang, C.Q.6
-
38
-
-
79551558111
-
An improved k-means clustering approach for teaching evaluation,
-
[38] O. Sangita, J. Dhanamma, An improved k-means clustering approach for teaching evaluation, in: Advances in Computing, Communication and Control, Springer, 2011, pp. 108–115, http://dx.doi.org/10.1007/978-3-642-18440-6_13.
-
(2011)
Advances in Computing, Communication and Control, Springer
, pp. 108-115
-
-
Sangita, O.1
Dhanamma, J.2
-
39
-
-
84888119718
-
Enhancing scalability and accuracy of recommendation systems using unsupervised learning and particle swarm optimization
-
[39] Bakshi, S., Jagadev, A.K., Dehuri, S., Wang, G., Enhancing scalability and accuracy of recommendation systems using unsupervised learning and particle swarm optimization. Appl. Soft Comput. 15 (2014), 21–29, 10.1016/j.asoc.2013.10.018.
-
(2014)
Appl. Soft Comput.
, vol.15
, pp. 21-29
-
-
Bakshi, S.1
Jagadev, A.K.2
Dehuri, S.3
Wang, G.4
-
40
-
-
70449510391
-
Cluster validity measurement techniques,
-
[40] C. Legány, S. Juhász, A. Babos, Cluster validity measurement techniques, in: Proceedings of 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, 2006, pp. 388–393.
-
(2006)
Proceedings of 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain
, pp. 388-393
-
-
Legány, C.1
Juhász, S.2
Babos, A.3
-
41
-
-
84941155240
-
Well separated clusters and optimal fuzzy partitions
-
[41] Dunn, J.C., Well separated clusters and optimal fuzzy partitions. J. Cybern. 4 (1974), 95–104, 10.1080/01969727408546059.
-
(1974)
J. Cybern.
, vol.4
, pp. 95-104
-
-
Dunn, J.C.1
-
42
-
-
85013709368
-
-
4th edition Elsevier, Burlington, MA, USA
-
[42] Theodoridis, S., Koutroumbas, K., Pattern Recognition, 4th edition, 2008, Elsevier, Burlington, MA, USA.
-
(2008)
Pattern Recognition
-
-
Theodoridis, S.1
Koutroumbas, K.2
-
43
-
-
0031166291
-
Cluster validation using graph theoretic concepts
-
[43] Pal, N.R., Biswas, J., Cluster validation using graph theoretic concepts. Pattern Recognit. 30 (1997), 847–857, 10.1016/S0031-3203(96)00127-6.
-
(1997)
Pattern Recognit.
, vol.30
, pp. 847-857
-
-
Pal, N.R.1
Biswas, J.2
-
44
-
-
0023453329
-
Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
-
[44] Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65, 10.1016/0377–0427(87)90125-7.
-
(1987)
J. Comput. Appl. Math.
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
45
-
-
0017953820
-
A cluster separation measure
-
[45] Davies, D.L., Bouldin, D.W., A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1 (1979), 224–227, 10.1109/TPAMI.1979.4766909.
-
(1979)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.1
, pp. 224-227
-
-
Davies, D.L.1
Bouldin, D.W.2
-
46
-
-
84973497973
-
CDV index: a validity index for better clustering quality measurement
-
[46] Yeh, J.H., Joung, F.J., Lin, J.C., CDV index: a validity index for better clustering quality measurement. J. Comput. Commun. 2 (2014), 163–171, 10.4236/jcc.2014.24022.
-
(2014)
J. Comput. Commun.
, vol.2
, pp. 163-171
-
-
Yeh, J.H.1
Joung, F.J.2
Lin, J.C.3
-
47
-
-
70350753506
-
A comparison between the Silhouette index and the Davies-Bouldin index in labeling IDS clusters,
-
[47] S. Petrović, A comparison between the Silhouette index and the Davies-Bouldin index in labeling IDS clusters, in: Proceedings of the 11th Nordic Workshop on Secure IT-systems, Linkoping, Sweden, 2006, pp. 53–64.
-
(2006)
Proceedings of the 11th Nordic Workshop on Secure IT-systems, Linkoping, Sweden
, pp. 53-64
-
-
Petrović, S.1
-
48
-
-
0002892194
-
Determination of number of clusters in k-means clustering and application in colour image segmentation,
-
[48] S. Ray, R.H. Turi, Determination of number of clusters in k-means clustering and application in colour image segmentation, in: Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques, Calcutta, India, 1999, pp. 137–143.
-
(1999)
Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques, Calcutta, India
, pp. 137-143
-
-
Ray, S.1
Turi, R.H.2
-
49
-
-
84994825680
-
Social Network Analysis: Methods and Applications
-
Cambridge University Press New York
-
[49] Wasserman, S., Faust, K., Social Network Analysis: Methods and Applications. 1994, Cambridge University Press, New York.
-
(1994)
-
-
Wasserman, S.1
Faust, K.2
-
50
-
-
77951436945
-
User position measures in social networks,
-
[50] K. Musiał, P. Kazienko, P. Bródka, User position measures in social networks, in: Proceedings of the 3rd Workshop on Social Network Mining and Analysis, New York, USA, 2009. 10.1145/1731011.1731017.
-
(2009)
Proceedings of the 3rd Workshop on Social Network Mining and Analysis, New York, USA
-
-
Musiał, K.1
Kazienko, P.2
Bródka, P.3
-
51
-
-
79958236531
-
Social networks: prestige, centrality, and influence,
-
[51] A. Rusinowska, R. Berghammer, H.D. Swart, M. Grabisch, Social networks: prestige, centrality, and influence, in: Relational and Algebraic Methods in Computer Science, Springer, 2011, pp. 22–39, 10.1007/978-3-642-21070-9_2.
-
(2011)
Relational and Algebraic Methods in Computer Science, Springer
, pp. 22-39
-
-
Rusinowska, A.1
Berghammer, R.2
Swart, H.D.3
Grabisch, M.4
-
53
-
-
84896952109
-
Application of social network metrics to a trust-aware collaborative model for generating personalized user recommendations,
-
[53] I. Varlamis, M. Eirinaki, M. Louta, Application of social network metrics to a trust-aware collaborative model for generating personalized user recommendations, in: The Influence of Technology on Social Network Analysis and Mining, Springer, 2013, pp. 49–74, 10.1007/978-3-7091-1346-2_3.
-
(2013)
The Influence of Technology on Social Network Analysis and Mining, Springer
, pp. 49-74
-
-
Varlamis, I.1
Eirinaki, M.2
Louta, M.3
-
54
-
-
84857518227
-
A social network representation for collaborative filtering recommender systems,
-
[54] L.G. Pérez, F. Chiclana, S. Ahmadi, A social network representation for collaborative filtering recommender systems, in: Proceedings of 11th International Conference on Intelligent Systems Design and Applications, Córdoba, Spain, 2011, pp. 438–443. 10.1109/ISDA.2011.6121695.
-
(2011)
Proceedings of 11th International Conference on Intelligent Systems Design and Applications, Córdoba, Spain
, pp. 438-443
-
-
Pérez, L.G.1
Chiclana, F.2
Ahmadi, S.3
-
55
-
-
77949788147
-
Attribute normalization in network intrusion detection,
-
[55] W. Wang, X. Zhang, S. Gombault, S.J. Knapskog, Attribute normalization in network intrusion detection, in: Proceeding of 10th International Symposium on Pervasive Systems, Algorithms, and Networks, Kaohsiung, Taiwan, 2009, pp. 448–453. 10.1109/I-SPAN.2009.49.
-
(2009)
Proceeding of 10th International Symposium on Pervasive Systems, Algorithms, and Networks, Kaohsiung, Taiwan
, pp. 448-453
-
-
Wang, W.1
Zhang, X.2
Gombault, S.3
Knapskog, S.J.4
-
56
-
-
38149071742
-
Approximating betweenness centrality,
-
[56] D.A. Bader, S. Kintali, K. Madduri, M. Mihail, Approximating betweenness centrality, in: Proceedings of 5th International Conference on Algorithms and Models for the Web-Graph, San Diego, CA, USA, 2007, pp. 124–137. 10.1007/978-3-540-77004-6_10.
-
(2007)
Proceedings of 5th International Conference on Algorithms and Models for the Web-Graph, San Diego, CA, USA
, pp. 124-137
-
-
Bader, D.A.1
Kintali, S.2
Madduri, K.3
Mihail, M.4
-
57
-
-
84866464719
-
Centralities in large networks: algorithms and observations,
-
[57] U. Kang, S. Papadimitriou, J. Sun, H. Tong, Centralities in large networks: algorithms and observations, in: Proceedings of the SIAM International Conference on Data Mining, Mesa, Arizona, USA, 2011. 10.1137/1.9781611972818.11.
-
(2011)
Proceedings of the SIAM International Conference on Data Mining, Mesa, Arizona, USA
-
-
Kang, U.1
Papadimitriou, S.2
Sun, J.3
Tong, H.4
-
58
-
-
68849121452
-
Comparing genetic algorithms and Newton-like methods for the solution of the history matching problem
-
[58] Portes dos Santos, E., Xavier, C.R., Goldfeld, P., Dickstein, F., Weber dos Santos, R., Comparing genetic algorithms and Newton-like methods for the solution of the history matching problem. Lect. Notes Comput. Sci. 5544 (2009), 377–386.
-
(2009)
Lect. Notes Comput. Sci.
, vol.5544
, pp. 377-386
-
-
Portes dos Santos, E.1
Xavier, C.R.2
Goldfeld, P.3
Dickstein, F.4
Weber dos Santos, R.5
-
59
-
-
77950575061
-
Detailed analysis of the KDD CUP 99 data set,
-
[59] M. Tavallaee, E. Bagheri, L. Wei, A. Ghorbani, Detailed analysis of the KDD CUP 99 data set, in: IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, Canada, 2009, pp. 1–6. 10.1109/CISDA.2009.5356528.
-
(2009)
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, Canada
, pp. 1-6
-
-
Tavallaee, M.1
Bagheri, E.2
Wei, L.3
Ghorbani, A.4
-
60
-
-
85008947904
-
Analyze different approaches for IDS using KDD 99 data set
-
[60] Lahre, K., Diwan, T.D., Kashyap, S.K., Agrawal, P., Analyze different approaches for IDS using KDD 99 data set. Int. J. Recent Innov. Trends Comput. Commun. 1 (2013), 645–651.
-
(2013)
Int. J. Recent Innov. Trends Comput. Commun.
, vol.1
, pp. 645-651
-
-
Lahre, K.1
Diwan, T.D.2
Kashyap, S.K.3
Agrawal, P.4
-
61
-
-
84865637442
-
Intrusion detection using reduced-size RNN based on feature grouping
-
[61] Sheikhan, M., Jadidi, Z., Farrokhi, A., Intrusion detection using reduced-size RNN based on feature grouping. Neural Comput. Appl. 21 (2012), 1185–1190, 10.1007/s00521-010-0487-0.
-
(2012)
Neural Comput. Appl.
, vol.21
, pp. 1185-1190
-
-
Sheikhan, M.1
Jadidi, Z.2
Farrokhi, A.3
-
62
-
-
79957736179
-
Distributed denial of service attack detection using an ensemble of neural classifier
-
[62] Raj Kumar, P.A., Selvakumar, S., Distributed denial of service attack detection using an ensemble of neural classifier. Comput. Commun. 34 (2011), 1328–1341, 10.1016/j.comcom.2011.01.012.
-
(2011)
Comput. Commun.
, vol.34
, pp. 1328-1341
-
-
Raj Kumar, P.A.1
Selvakumar, S.2
-
63
-
-
84872155077
-
Detection of distributed denial of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems
-
[63] Raj Kumar, P.A., Selvakumar, S., Detection of distributed denial of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems. Comput. Commun. 36 (2013), 303–319, 10.1016/j.comcom.2012.09.010.
-
(2013)
Comput. Commun.
, vol.36
, pp. 303-319
-
-
Raj Kumar, P.A.1
Selvakumar, S.2
-
64
-
-
84867826492
-
A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection
-
[64] Ippoliti, D., Zhou, X., A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection. J. Parallel Distrib. Comput. 72 (2012), 1576–1590, 10.1016/j.jpdc.2012.09.004.
-
(2012)
J. Parallel Distrib. Comput.
, vol.72
, pp. 1576-1590
-
-
Ippoliti, D.1
Zhou, X.2
-
65
-
-
80051793908
-
Data preprocessing for anomaly based network intrusion detection: a review
-
[65] Davis, J.J., Clark, A.J., Data preprocessing for anomaly based network intrusion detection: a review. Comput. Secur. 30 (2011), 353–375, 10.1016/j.cose.2011.05.008.
-
(2011)
Comput. Secur.
, vol.30
, pp. 353-375
-
-
Davis, J.J.1
Clark, A.J.2
-
66
-
-
85006208829
-
Intrusion detection model using fusion of chi-square feature selection and multi class SVM
-
(in press)
-
[66] S.T. Ikram, A.K. Cherukuri, Intrusion detection model using fusion of chi-square feature selection and multi class SVM, J. King Saud Univ. – Comput. Inf. Sci., 2016 (in press). 10.1016/j.jksuci.2015.12.004.
-
(2016)
J. King Saud Univ. – Comput. Inf. Sci.
-
-
Ikram, S.T.1
Cherukuri, A.K.2
-
67
-
-
33745163595
-
Learning intrusion detection: supervised or unsupervised?
-
[67] Laskov, P., Dussel, P., Schafer, C., Rieck, K., Learning intrusion detection: supervised or unsupervised?. Image Anal. Process., 2005, 50–57.
-
(2005)
Image Anal. Process.
, pp. 50-57
-
-
Laskov, P.1
Dussel, P.2
Schafer, C.3
Rieck, K.4
-
68
-
-
84935592025
-
PCA filtering and probabilistic SOM for network intrusion detection
-
[68] De La Hoz, E., Hoz, E. De. La, Ortiz, A., Ortega, J., Prieto, B., PCA filtering and probabilistic SOM for network intrusion detection. Neurocomputing 164 (2015), 71–81, 10.1016/j.neucom.2014.09.083.
-
(2015)
Neurocomputing
, vol.164
, pp. 71-81
-
-
De La Hoz, E.1
Hoz, E.D.L.2
Ortiz, A.3
Ortega, J.4
Prieto, B.5
-
69
-
-
62849107731
-
Efficient intrusion detection using principal component analysis,
-
[69] Y. Bouzida, F. Cuppens, N. Cuppens-Boulahia, S. Gombault, Efficient intrusion detection using principal component analysis, in: Proceedings of the 3ème Conférence sur la Sécurite´ et Architectures Réseaux (SAR), Orlando, FL, USA, 2004.
-
(2004)
Proceedings of the 3ème Conférence sur la Sécurite´ et Architectures Réseaux (SAR), Orlando, FL, USA
-
-
Bouzida, Y.1
Cuppens, F.2
Cuppens-Boulahia, N.3
Gombault, S.4
-
70
-
-
84959432825
-
A multi-step outlier-based anomaly detection approach to network-wide traffic
-
[70] Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K., A multi-step outlier-based anomaly detection approach to network-wide traffic. Inf. Sci. 348 (2016), 243–271, 10.1016/j.ins.2016.02.023.
-
(2016)
Inf. Sci.
, vol.348
, pp. 243-271
-
-
Bhuyan, M.H.1
Bhattacharyya, D.K.2
Kalita, J.K.3
-
71
-
-
79956097533
-
Mutual information-based feature selection for intrusion detection systems
-
[71] Amiri, F., Rezaei Yousefi, M.M., Lucas, C., Shakery, A., Yazdani, N., Mutual information-based feature selection for intrusion detection systems. J. Netw. Comput. Appl. 34 (2011), 1184–1199, 10.1016/j.jnca.2011.01.002.
-
(2011)
J. Netw. Comput. Appl.
, vol.34
, pp. 1184-1199
-
-
Amiri, F.1
Rezaei Yousefi, M.M.2
Lucas, C.3
Shakery, A.4
Yazdani, N.5
-
72
-
-
84929620760
-
Evolving statistical rulesets for network intrusion detection
-
[72] Rastegari, S., Hingston, P., Lam, C.-P., Evolving statistical rulesets for network intrusion detection. Appl. Soft Comput. 33 (2015), 348–359, 10.1016/j.asoc.2015.04.041.
-
(2015)
Appl. Soft Comput.
, vol.33
, pp. 348-359
-
-
Rastegari, S.1
Hingston, P.2
Lam, C.-P.3
-
73
-
-
3042829247
-
An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
-
[73] Herlocker, J., Konstan, J.A., Riedl, J., An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr. 5 (2002), 287–310, 10.1023/A:1020443909834.
-
(2002)
Inf. Retr.
, vol.5
, pp. 287-310
-
-
Herlocker, J.1
Konstan, J.A.2
Riedl, J.3
-
74
-
-
0003922190
-
-
2nd edition John Wiley & Sons New York
-
[74] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification, 2nd edition, 2000, John Wiley & Sons, New York.
-
(2000)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
75
-
-
84864958534
-
-
[75] Agrawal, R., Joshi, M.V., PNrule: A New Framework for Learning Classifier Models in Data Mining (a case-study in network intrusion detection), IBM Research Division, Report No. RC-21719, 2000.
-
(2000)
PNrule: A New Framework for Learning Classifier Models in Data Mining (a case-study in network intrusion detection), IBM Research Division, Report No. RC-21719
-
-
Agrawal, R.1
Joshi, M.V.2
-
76
-
-
84994874514
-
A review of DoS attacks in cloud computing
-
[76] Vidhya, V., A review of DoS attacks in cloud computing. IOSR J. Comput. Eng. 16 (2014), 32–35.
-
(2014)
IOSR J. Comput. Eng.
, vol.16
, pp. 32-35
-
-
Vidhya, V.1
-
77
-
-
84899669179
-
Improving domain action classification in goal-oriented dialogues using a mutual retraining method
-
[77] Seon, C.N., Lee, H., Kim, H., Seo, J., Improving domain action classification in goal-oriented dialogues using a mutual retraining method. Pattern Recognit. Lett. 45 (2014), 154–160, 10.1016/j.patrec.2014.03.021.
-
(2014)
Pattern Recognit. Lett.
, vol.45
, pp. 154-160
-
-
Seon, C.N.1
Lee, H.2
Kim, H.3
Seo, J.4
-
78
-
-
84958756389
-
Evaluating machine learning classification for financial trading: an empirical approach
-
[78] Gerlein, E.A., McGinnity, M., Belatreche, A., Coleman, S., Evaluating machine learning classification for financial trading: an empirical approach. Expert Syst. Appl. 54 (2016), 193–207, 10.1016/j.eswa.2016.01.018.
-
(2016)
Expert Syst. Appl.
, vol.54
, pp. 193-207
-
-
Gerlein, E.A.1
McGinnity, M.2
Belatreche, A.3
Coleman, S.4
-
79
-
-
84962205019
-
Ensemble based collaborative and distributed intrusion detection systems: a survey
-
[79] Folino, G., Sabatino, P., Ensemble based collaborative and distributed intrusion detection systems: a survey. J. Netw. Comput. Appl. 66 (2016), 1–16, 10.1016/j.jnca.2016.03.011.
-
(2016)
J. Netw. Comput. Appl.
, vol.66
, pp. 1-16
-
-
Folino, G.1
Sabatino, P.2
-
80
-
-
84954503459
-
Intrusion response systems: foundations, design, and challenges
-
[80] Inayat, Z., Gani, A., Anuar, N.B., Khurram Khan, M., Anwa, S., Intrusion response systems: foundations, design, and challenges. J. Netw. Comput. Appl. 62 (2016), 53–74, 10.1016/j.jnca.2015.12.006.
-
(2016)
J. Netw. Comput. Appl.
, vol.62
, pp. 53-74
-
-
Inayat, Z.1
Gani, A.2
Anuar, N.B.3
Khurram Khan, M.4
Anwa, S.5
|