메뉴 건너뛰기




Volumn 116, Issue , 2017, Pages 74-85

An improved NSGA-III algorithm for feature selection used in intrusion detection

Author keywords

Feature selection; IDS; Many objective optimization; Network anomaly detection

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; COMPUTATIONAL COMPLEXITY; INTRUSION DETECTION; MERCURY (METAL); OPTIMIZATION;

EID: 85006241215     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.10.030     Document Type: Article
Times cited : (147)

References (39)
  • 1
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: existing solution and latest technological trends
    • [1] Patcha, J.-M.P., An overview of anomaly detection techniques: existing solution and latest technological trends. Comput. Netw. 51:12 (2007), 3448–3470.
    • (2007) Comput. Netw. , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, J.-M.P.1
  • 2
    • 84888315965 scopus 로고    scopus 로고
    • A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
    • [2] Kim, G., Lee, S., Kim, S., A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Syst. Appl. 41 (2014), 1690–1700.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 1690-1700
    • Kim, G.1    Lee, S.2    Kim, S.3
  • 3
    • 85013709368 scopus 로고    scopus 로고
    • Pattern Recognition
    • Academic Press
    • [3] Theodoridis, S., Koutroumbas, K., Pattern Recognition. 2009, Academic Press.
    • (2009)
    • Theodoridis, S.1    Koutroumbas, K.2
  • 4
    • 34248370390 scopus 로고    scopus 로고
    • Feature subset selection in unsupervised learning via multi-objective optimization
    • [4] Handl, J., Knowles, J., Feature subset selection in unsupervised learning via multi-objective optimization. Int. J. Comput. Intel. Res. 2:3 (2006), 217–238.
    • (2006) Int. J. Comput. Intel. Res. , vol.2 , Issue.3 , pp. 217-238
    • Handl, J.1    Knowles, J.2
  • 5
    • 84908054655 scopus 로고    scopus 로고
    • Feature selection by multi-objective optimization: application to network anomaly detection by hierarchical self-organizing maps
    • [5] de la Hoz, E., de la Hoz, E., Feature selection by multi-objective optimization: application to network anomaly detection by hierarchical self-organizing maps. Knowl.-Based Syst. 71 (2014), 322–338.
    • (2014) Knowl.-Based Syst. , vol.71 , pp. 322-338
    • de la Hoz, E.1    de la Hoz, E.2
  • 7
    • 33750487584 scopus 로고    scopus 로고
    • Statistics for Engineers and Scientists
    • third ed. McGraw-Hill
    • [7] Navidi, W., Statistics for Engineers and Scientists. third ed., 2010, McGraw-Hill.
    • (2010)
    • Navidi, W.1
  • 8
    • 33744584654 scopus 로고
    • Induction of decision trees
    • [8] Quinlan, J., Induction of decision trees. Mach. Learn. 1:1 (1986), 81–106.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.1
  • 9
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann Publishers Inc San Francisco, CA, USA
    • [9] Hall, M.A., Correlation-based feature selection for discrete and numeric class machine learning. Proceedings of the Seventeenth International Conference on Machine Learning, ICML'00, 2000, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 359–366.
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning, ICML'00 , pp. 359-366
    • Hall, M.A.1
  • 10
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • [10] Yu, L., Liu, H., Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5 (2004), 1205–1224.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 11
    • 84919327055 scopus 로고    scopus 로고
    • A novel feature-selection approach base on cuttlefish optimization algorithm for intrusion detection systems
    • [11] Eesa, A.S., Orman, Z., Brifcani, A.M.A., A novel feature-selection approach base on cuttlefish optimization algorithm for intrusion detection systems. Expert Syst. Appl. 42:5 (2015), 2670–2679.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.5 , pp. 2670-2679
    • Eesa, A.S.1    Orman, Z.2    Brifcani, A.M.A.3
  • 12
    • 84942370769 scopus 로고    scopus 로고
    • Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments
    • [12] Ramezani, F., Lu, J., Taheri, J., Hussain, F.K., Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments. World Wide Web 18:6 (2015), 1737–1757.
    • (2015) World Wide Web , vol.18 , Issue.6 , pp. 1737-1757
    • Ramezani, F.1    Lu, J.2    Taheri, J.3    Hussain, F.K.4
  • 14
    • 0033676397 scopus 로고    scopus 로고
    • A multi-objective evolutionary setting for feature selection and a commonality-based crossover operator
    • IEEE Press New York
    • [14] Emmanouilidis, A.H., MacIntyre, J., A multi-objective evolutionary setting for feature selection and a commonality-based crossover operator. Proceedings of the 2000 Congress on Evolutionary Computation, 2000, IEEE Press, New York, 209–316.
    • (2000) Proceedings of the 2000 Congress on Evolutionary Computation , pp. 209-316
    • Emmanouilidis, A.H.1    MacIntyre, J.2
  • 16
    • 0142086622 scopus 로고    scopus 로고
    • A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
    • [16] Oliveira, L., Sabourin, R., Bortolozzi, F., Suen, C., A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition. Int. J. Pattern Recognit Artif Intell. 17:6 (2003), 903–929.
    • (2003) Int. J. Pattern Recognit Artif Intell. , vol.17 , Issue.6 , pp. 903-929
    • Oliveira, L.1    Sabourin, R.2    Bortolozzi, F.3    Suen, C.4
  • 17
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • [17] Srinivas, N., Deb, K., Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2:3 (1994), 221–248.
    • (1994) Evol. Comput. , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 18
    • 0003866267 scopus 로고    scopus 로고
    • Multi-Objective Optimization Using Evolutionary Algorithms
    • Wiley Chichester, U.K.
    • [18] Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms. 2001, Wiley, Chichester, U.K.
    • (2001)
    • Deb, K.1
  • 19
    • 37249052124 scopus 로고    scopus 로고
    • Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
    • [19] Deb, K., Saxena, D., Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Proc. WCCI-2006, 2006, 3352–3360.
    • (2006) Proc. WCCI-2006 , pp. 3352-3360
    • Deb, K.1    Saxena, D.2
  • 20
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multi-objective genetic algorithm: NSGA-II
    • [20] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:2 (2002), 182–197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 22
    • 84905581607 scopus 로고    scopus 로고
    • An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach. Part I: solving problems with box constraints
    • [22] Deb, K., Jain, H., An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach. Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18:4 (2014), 577–601.
    • (2014) IEEE Trans. Evol. Comput. , vol.18 , Issue.4 , pp. 577-601
    • Deb, K.1    Jain, H.2
  • 23
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • [23] Yin, L., Ge, Y., Feature selection for high-dimensional imbalanced data. Neurocomputing 105 (2013), 3–11.
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1    Ge, Y.2
  • 25
    • 85006326625 scopus 로고    scopus 로고
    • The Jaccard Index
    • [25] The Jaccard Index, https://en.wikipedia.org/wiki/Jaccard_index.
  • 26
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • [26] Laumanns, M., Thiele, L., Deb, K., Zitzler, E., Combining convergence and diversity in evolutionary multi-objective optimization. Evol. Comput. 10:3 (2002), 263–282.
    • (2002) Evol. Comput. , vol.10 , Issue.3 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 27
    • 84866846120 scopus 로고    scopus 로고
    • Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization
    • [27] Hadka, Reed, P., Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evol. Comput. 20:3 (2012), 423–452.
    • (2012) Evol. Comput. , vol.20 , Issue.3 , pp. 423-452
    • Hadka1    Reed, P.2
  • 28
    • 0032348480 scopus 로고    scopus 로고
    • Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multi-criteria optimization problems
    • [28] Das, Dennis, J., Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multi-criteria optimization problems. SIAM J. Optim. 8:3 (1998), 631–657.
    • (1998) SIAM J. Optim. , vol.8 , Issue.3 , pp. 631-657
    • Das1    Dennis, J.2
  • 29
    • 85006287652 scopus 로고    scopus 로고
    • dataset
    • [29] KDD Cup, 1999. dataset http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
    • (1999)
    • Cup, K.D.D.1
  • 30
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln laboratory
    • [30] McHugh, J., Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln laboratory. ACM Trans. Inf. Syst. Secur. 3:4 (2000), 262–294.
    • (2000) ACM Trans. Inf. Syst. Secur. , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 32
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multi-objective genetic algorithm: NSGA-II
    • [32] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:2 (2002), 182–197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 33
    • 34548146810 scopus 로고    scopus 로고
    • Proper Use of ROC Curves in Intrusion/Anomaly Detection
    • School of Computing Science, University of Newcastle upon Tyne Tech. Rep. CS-TR-871
    • [33] Maxion, R.A., Roberts, R.R., Proper Use of ROC Curves in Intrusion/Anomaly Detection., 2004, School of Computing Science, University of Newcastle upon Tyne Tech. Rep. CS-TR-871.
    • (2004)
    • Maxion, R.A.1    Roberts, R.R.2
  • 35
    • 49549120416 scopus 로고    scopus 로고
    • An adaptive automatically tuning intrusion detection system
    • 10
    • [35] Yu, Z., Tsai, J.J.P., Weigert, T., An adaptive automatically tuning intrusion detection system. ACM Trans. Auton. Adaptive Syst. 3:3 (2008), 1–25 10.
    • (2008) ACM Trans. Auton. Adaptive Syst. , vol.3 , Issue.3 , pp. 1-25
    • Yu, Z.1    Tsai, J.J.P.2    Weigert, T.3
  • 36
    • 84867826492 scopus 로고    scopus 로고
    • A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection
    • [36] Ippoliti, D., Zhou, X., A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection. J. Parallel Distrib. Comput. 72:12 (2012), 1576–1590.
    • (2012) J. Parallel Distrib. Comput. , vol.72 , Issue.12 , pp. 1576-1590
    • Ippoliti, D.1    Zhou, X.2
  • 39
    • 81855221688 scopus 로고    scopus 로고
    • Decision tree based light weight intrusion detection using a wrapper approach
    • [39] Sivatha Sindhu, S.S., Geetha, S., Kannan, A., Decision tree based light weight intrusion detection using a wrapper approach. Expert Syst. Appl. 39:1 (2012), 129–141.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.1 , pp. 129-141
    • Sivatha Sindhu, S.S.1    Geetha, S.2    Kannan, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.