메뉴 건너뛰기




Volumn 556, Issue 7699, 2018, Pages 64-69

Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes

Author keywords

[No Author keywords available]

Indexed keywords

GATOR1 PROTEIN; GUANINE NUCLEOTIDE BINDING PROTEIN; GUANOSINE TRIPHOSPHATASE; GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN; HETERODIMER; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; RAG GTPASE; RAGA PRIOTEIN; UNCLASSIFIED DRUG; AMINO ACID; DEPDC5 PROTEIN, HUMAN; GUANOSINE TRIPHOSPHATE; MONOMERIC GUANINE NUCLEOTIDE BINDING PROTEIN; MULTIPROTEIN COMPLEX; NPRL2 PROTEIN, HUMAN; NPRL3 PROTEIN, HUMAN; PROTEIN BINDING; REPRESSOR PROTEIN; RRAGA PROTEIN, HUMAN; TUMOR SUPPRESSOR PROTEIN;

EID: 85045144337     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature26158     Document Type: Article
Times cited : (134)

References (39)
  • 1
    • 84922789990 scopus 로고    scopus 로고
    • Nutrient-sensing mechanisms and pathways
    • Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302-310 (2015).
    • (2015) Nature , vol.517 , pp. 302-310
    • Efeyan, A.1    Comb, W.C.2    Sabatini, D.M.3
  • 2
    • 33745307617 scopus 로고    scopus 로고
    • Ras, PI(3)K and mTOR signalling controls tumour cell growth
    • Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430 (2006).
    • (2006) Nature , vol.441 , pp. 424-430
    • Shaw, R.J.1    Cantley, L.C.2
  • 4
    • 85010505580 scopus 로고    scopus 로고
    • Nutrient sensing and TOR signaling in yeast and mammals
    • González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397-408 (2017).
    • (2017) EMBO J. , vol.36 , pp. 397-408
    • González, A.1    Hall, M.N.2
  • 5
    • 85014844261 scopus 로고    scopus 로고
    • MTOR signaling in growth, metabolism, and disease
    • Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976 (2017).
    • (2017) Cell , vol.168 , pp. 960-976
    • Saxton, R.A.1    Sabatini, D.M.2
  • 6
    • 0028849086 scopus 로고
    • Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases
    • Schürmann, A., Brauers, A., Massmann, S., Becker, W. & Joost, H. G. Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J. Biol. Chem. 270, 28982-28988 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 28982-28988
    • Schürmann, A.1    Brauers, A.2    Massmann, S.3    Becker, W.4    Joost, H.G.5
  • 7
    • 0031985372 scopus 로고    scopus 로고
    • RagA is a functional homologue of S. Cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway
    • Hirose, E., Nakashima, N., Sekiguchi, T. & Nishimoto, T. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J. Cell Sci. 111, 11-21 (1998).
    • (1998) J. Cell Sci. , vol.111 , pp. 11-21
    • Hirose, E.1    Nakashima, N.2    Sekiguchi, T.3    Nishimoto, T.4
  • 8
    • 0035831451 scopus 로고    scopus 로고
    • Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
    • Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. & Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276, 7246-7257 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 7246-7257
    • Sekiguchi, T.1    Hirose, E.2    Nakashima, N.3    Ii, M.4    Nishimoto, T.5
  • 9
    • 0032771639 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p
    • Nakashima, N., Noguchi, E. & Nishimoto, T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 152, 853-867 (1999).
    • (1999) Genetics , vol.152 , pp. 853-867
    • Nakashima, N.1    Noguchi, E.2    Nishimoto, T.3
  • 10
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 11
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki, K., Li, Y., Xu, T. & Guan, K.-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.-L.4
  • 12
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785 (2014).
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1
  • 13
    • 4444276510 scopus 로고    scopus 로고
    • Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity
    • Li, Y., Inoki, K. & Guan, K. L. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol. Cell. Biol. 24, 7965-7975 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 7965-7975
    • Li, Y.1    Inoki, K.2    Guan, K.L.3
  • 14
    • 18244362311 scopus 로고    scopus 로고
    • Novel role of the small GTPase Rheb: Its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
    • Saito, K., Araki, Y., Kontani, K., Nishina, H. & Katada, T. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J. Biochem. 137, 423-430 (2005).
    • (2005) J. Biochem. , vol.137 , pp. 423-430
    • Saito, K.1    Araki, Y.2    Kontani, K.3    Nishina, H.4    Katada, T.5
  • 15
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/ TOR signalling network
    • Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/ TOR signalling network. Nat. Cell Biol. 5, 566-571 (2003).
    • (2003) Nat. Cell Biol. , vol.5 , pp. 566-571
    • Saucedo, L.J.1
  • 16
    • 0038304516 scopus 로고    scopus 로고
    • Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
    • Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559-566 (2003).
    • (2003) Nat. Cell Biol. , vol.5 , pp. 559-566
    • Stocker, H.1
  • 17
    • 85031798280 scopus 로고    scopus 로고
    • Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability
    • Shen, K., Choe, A. & Sabatini, D. M. Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability. Mol. Cell 68, 552-565.e8 (2017).
    • (2017) Mol. Cell , vol.68 , pp. 552e8-565e8
    • Shen, K.1    Choe, A.2    Sabatini, D.M.3
  • 18
    • 84878353147 scopus 로고    scopus 로고
    • Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
    • Panchaud, N., Péli-Gulli, M.-P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).
    • (2013) Sci. Signal. , vol.6 , pp. ra42
    • Panchaud, N.1    Péli-Gulli, M.-P.2    De Virgilio, C.3
  • 19
    • 84878357685 scopus 로고    scopus 로고
    • A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106 (2013).
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1
  • 20
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • Petit, C. S., Roczniak-Ferguson, A. & Ferguson, S. M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202, 1107-1122 (2013).
    • (2013) J. Cell Biol. , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 21
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun, Z.-Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495-505 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 495-505
    • Tsun, Z.-Y.1
  • 22
    • 84878352545 scopus 로고    scopus 로고
    • Mutations in DEPDC5 cause familial focal epilepsy with variable foci
    • Dibbens, L. M. et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat. Genet. 45, 546-551 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 546-551
    • Dibbens, L.M.1
  • 23
    • 84878366242 scopus 로고    scopus 로고
    • Mutations of DEPDC5 cause autosomal dominant focal epilepsies
    • Ishida, S. et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat. Genet. 45, 552-555 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 552-555
    • Ishida, S.1
  • 24
    • 80655144720 scopus 로고    scopus 로고
    • Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation
    • Wu, X. & Tu, B. P. Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol. Biol. Cell 22, 4124-4133 (2011).
    • (2011) Mol. Biol. Cell , vol.22 , pp. 4124-4133
    • Wu, X.1    Tu, B.P.2
  • 25
    • 39449115394 scopus 로고    scopus 로고
    • AI-TASSER server for protein 3D structure prediction
    • Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
    • (2008) BMC Bioinformatics , vol.9 , pp. 40
    • Zhang, Y.1
  • 26
  • 27
    • 84876431000 scopus 로고    scopus 로고
    • Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II
    • Levine, T. P. et al. Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 4, 62-69 (2013).
    • (2013) Small GTPases , vol.4 , pp. 62-69
    • Levine, T.P.1
  • 28
    • 80051873144 scopus 로고    scopus 로고
    • Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation
    • Gong, R. et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668-1673 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1668-1673
    • Gong, R.1
  • 29
    • 84865492819 scopus 로고    scopus 로고
    • Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion
    • Jeong, J.-H. et al. Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion. J. Biol. Chem. 287, 29648-29653 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 29648-29653
    • Jeong, J.-H.1
  • 31
    • 9644279591 scopus 로고    scopus 로고
    • Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain
    • Shiozawa, K. et al. Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain. J. Biol. Chem. 279, 50060-50068 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 50060-50068
    • Shiozawa, K.1
  • 32
    • 0031585989 scopus 로고    scopus 로고
    • The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution
    • Ingelman, M., Bianchi, V. & Eklund, H. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. J. Mol. Biol. 268, 147-157 (1997).
    • (1997) J. Mol. Biol. , vol.268 , pp. 147-157
    • Ingelman, M.1    Bianchi, V.2    Eklund, H.3
  • 33
    • 0028822128 scopus 로고
    • Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin
    • Qu, A. & Leahy, D. J. Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin. Proc. Natl Acad. Sci. USA 92, 10277-10281 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 10277-10281
    • Qu, A.1    Leahy, D.J.2
  • 34
    • 84910612231 scopus 로고    scopus 로고
    • Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway
    • Algret, R. et al. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol. Cell. Proteomics 13, 2855-2870 (2014).
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 2855-2870
    • Algret, R.1
  • 35
    • 3342936383 scopus 로고    scopus 로고
    • Crystal structure of the p14/MP1 scaffolding complex: How a twin couple attaches mitogen-activated protein kinase signaling to late endosomes
    • Kurzbauer, R. et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc. Natl Acad. Sci. USA 101, 10984-10989 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 10984-10989
    • Kurzbauer, R.1
  • 36
    • 85014816345 scopus 로고    scopus 로고
    • KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1
    • Wolfson, R. L. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438-442 (2017).
    • (2017) Nature , vol.543 , pp. 438-442
    • Wolfson, R.L.1
  • 37
    • 85033482466 scopus 로고    scopus 로고
    • SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway
    • Gu, X. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813-818 (2017).
    • (2017) Science , vol.358 , pp. 813-818
    • Gu, X.1
  • 38
    • 0030772378 scopus 로고    scopus 로고
    • The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants
    • Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338 (1997).
    • (1997) Science , vol.277 , pp. 333-338
    • Scheffzek, K.1
  • 39


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.