메뉴 건너뛰기




Volumn 293, Issue 14, 2018, Pages 5044-5052

Cyanobacteria: Promising biocatalysts for sustainable chemical production

Author keywords

[No Author keywords available]

Indexed keywords

ENZYMES; METABOLITES;

EID: 85045076130     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.R117.815886     Document Type: Review
Times cited : (176)

References (100)
  • 3
    • 84959268596 scopus 로고    scopus 로고
    • The role of biology in planetary evolution: Cyanobacterial primary production in low-oxygen proterozoic oceans
    • Hamilton, T. L., Bryant, D. A., and Macalady, J. L. (2016) The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen proterozoic oceans. Environ. Microbiol. 18, 325–340 CrossRef Medline
    • (2016) Environ. Microbiol. , vol.18 , pp. 325-340
    • Hamilton, T.L.1    Bryant, D.A.2    Macalady, J.L.3
  • 5
    • 84905484048 scopus 로고    scopus 로고
    • Physiology and molecular biology of aquatic cyanobacteria
    • Bullerjahn, G. S., and Post, A. F. (2014) Physiology and molecular biology of aquatic cyanobacteria. Front. Microbiol. 5, 359 Medline
    • (2014) Front. Microbiol. , vol.5 , pp. 359
    • Bullerjahn, G.S.1    Post, A.F.2
  • 6
    • 43549102657 scopus 로고    scopus 로고
    • Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances
    • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621– 639 CrossRef Medline
    • (2008) Plant J. , vol.54 , pp. 621-639
    • Hu, Q.1    Sommerfeld, M.2    Jarvis, E.3    Ghirardi, M.4    Posewitz, M.5    Seibert, M.6    Darzins, A.7
  • 7
    • 34547764830 scopus 로고    scopus 로고
    • Photosynthetic biomass and H2 production by green algae: From bioengineering to bioreactor scale-up
    • Hankamer, B., Lehr, F., Rupprecht, J., Mussgnug, J. H., Posten, C., and Kruse, O. (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol. Plant 131, 10 –21 CrossRef Medline
    • (2007) Physiol. Plant , vol.131 , pp. 10-21
    • Hankamer, B.1    Lehr, F.2    Rupprecht, J.3    Mussgnug, J.H.4    Posten, C.5    Kruse, O.6
  • 10
    • 80054710250 scopus 로고    scopus 로고
    • Bicarbonate produced from carbon capture for algae culture
    • Chi, Z., O’Fallon, J. V., and Chen, S. (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol. 29, 537–541 CrossRef Medline
    • (2011) Trends Biotechnol. , vol.29 , pp. 537-541
    • Chi, Z.1    O’Fallon, J.V.2    Chen, S.3
  • 11
    • 84954174060 scopus 로고    scopus 로고
    • In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity
    • Gimpel, J. A., Henríquez, V., and Mayfield, S. P. (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front. Microbiol. 6, 1376 Medline
    • (2015) Front. Microbiol. , vol.6 , pp. 1376
    • Gimpel, J.A.1    Henríquez, V.2    Mayfield, S.P.3
  • 12
    • 79958005777 scopus 로고    scopus 로고
    • Resource demand implications for US algae biofuels production scale-up
    • Pate, R., Klise, G., and Wu, B. (2011) Resource demand implications for US algae biofuels production scale-up. Appl. Energy 88, 3377–3388 CrossRef
    • (2011) Appl. Energy , vol.88 , pp. 3377-3388
    • Pate, R.1    Klise, G.2    Wu, B.3
  • 13
    • 85045043719 scopus 로고    scopus 로고
    • John Wiley & Sons, Ltd., Chichester, UK
    • Sharma, N. K., and Stal, L. J. (2014) Cyanobacteria, pp. 167–180 John Wiley & Sons, Ltd., Chichester, UK
    • (2014) Cyanobacteria , pp. 167-180
    • Sharma, N.K.1    Stal, L.J.2
  • 14
    • 79957982713 scopus 로고    scopus 로고
    • Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review
    • Markou, G., and Georgakakis, D. (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy 88, 3389 –3401 CrossRef
    • (2011) Applied Energy , vol.88 , pp. 3389-3401
    • Markou, G.1    Georgakakis, D.2
  • 15
    • 0032976323 scopus 로고    scopus 로고
    • Ethanol synthesis by genetic engineering in cyanobacteria
    • Deng, M.-D., and Coleman, J. R. (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523–528 Medline
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 523-528
    • Deng, M.-D.1    Coleman, J.R.2
  • 16
    • 84943628633 scopus 로고    scopus 로고
    • Natural product biosynthetic diversity and comparative genomics of the cyanobacteria
    • Dittmann, E., Gugger, M., Sivonen, K., and Fewer, D. P. (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642– 652 CrossRef Medline
    • (2015) Trends Microbiol , vol.23 , pp. 642-652
    • Dittmann, E.1    Gugger, M.2    Sivonen, K.3    Fewer, D.P.4
  • 18
    • 0032600888 scopus 로고    scopus 로고
    • Metabolic fluxes and metabolic engineering
    • Stephanopoulos, G. (1999) Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11 CrossRef Medline
    • (1999) Metab. Eng. , vol.1 , pp. 1-11
    • Stephanopoulos, G.1
  • 19
    • 84878849640 scopus 로고    scopus 로고
    • Carbon partitioning in photosynthesis
    • Melis, A. (2013) Carbon partitioning in photosynthesis. Curr. Opin. Chem. Biol. 17, 453– 456 CrossRef Medline
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 453-456
    • Melis, A.1
  • 20
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan, E. I., and Liao, J. C. (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13, 353–363 CrossRef Medline
    • (2011) Metab. Eng. , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 21
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan, E. I., and Liao, J. C. (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 109, 6018 – 6023 CrossRef Medline
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 23
    • 84868334617 scopus 로고    scopus 로고
    • Engineering a cyanobacterial cell factory for production of lactic acid
    • Angermayr, S. A., Paszota, M., and Hellingwerf, K. J. (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol. 78, 7098 –7106 CrossRef Medline
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 7098-7106
    • Angermayr, S.A.1    Paszota, M.2    Hellingwerf, K.J.3
  • 24
    • 84902690044 scopus 로고    scopus 로고
    • Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds
    • Lassen, L. M., Nielsen, A. Z., Ziersen, B., Gnanasekaran, T., Møller, B. L., and Jensen, P. E. (2014) Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth. Biol. 3, 1–12 CrossRef Medline
    • (2014) ACS Synth. Biol. , vol.3 , pp. 1-12
    • Lassen, L.M.1    Nielsen, A.Z.2    Ziersen, B.3    Gnanasekaran, T.4    Møller, B.L.5    Jensen, P.E.6
  • 25
    • 84954288565 scopus 로고    scopus 로고
    • Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway
    • Hirokawa, Y., Maki, Y., Tatsuke, T., and Hanai, T. (2016) Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metab. Eng. 34, 97–103 CrossRef Medline
    • (2016) Metab. Eng. , vol.34 , pp. 97-103
    • Hirokawa, Y.1    Maki, Y.2    Tatsuke, T.3    Hanai, T.4
  • 26
    • 0030669394 scopus 로고    scopus 로고
    • Fermentation in cyanobacteria
    • Stal, L. J., and Moezelaar, R. (1997) Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21, 179 –211 CrossRef
    • (1997) FEMS Microbiol. Rev. , vol.21 , pp. 179-211
    • Stal, L.J.1    Moezelaar, R.2
  • 27
    • 83755181765 scopus 로고    scopus 로고
    • The tricarboxylic acid cycle in cyanobacteria
    • Zhang, S., and Bryant, D. A. (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334, 1551–1553 CrossRef Medline
    • (2011) Science , vol.334 , pp. 1551-1553
    • Zhang, S.1    Bryant, D.A.2
  • 28
    • 84865578334 scopus 로고    scopus 로고
    • Unusual cyanobacterial TCA cycles: Not broken just different
    • Steinhauser, D., Fernie, A. R., and Araújo, W. L. (2012) Unusual cyanobacterial TCA cycles: not broken just different. Trends Plant Sci. 17, 503–509 CrossRef Medline
    • (2012) Trends Plant Sci. , vol.17 , pp. 503-509
    • Steinhauser, D.1    Fernie, A.R.2    Araújo, W.L.3
  • 30
    • 85053067547 scopus 로고    scopus 로고
    • Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host
    • Ruffing, A. M. (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front. Bioeng. Biotechnol. 2, 17 Medline
    • (2014) Front. Bioeng. Biotechnol. , vol.2 , pp. 17
    • Ruffing, A.M.1
  • 31
    • 84963766600 scopus 로고    scopus 로고
    • The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production
    • Song, K., Tan, X., Liang, Y., and Lu, X. (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl. Microbiol. Biotechnol. 100, 7865–7875 CrossRef Medline
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 7865-7875
    • Song, K.1    Tan, X.2    Liang, Y.3    Lu, X.4
  • 32
    • 84962062646 scopus 로고    scopus 로고
    • Metabolic model of Synechococcus sp. PCC 7002: Prediction of flux distribution and network modification for enhanced biofuel production
    • Hendry, J. I., Prasannan, C. B., Joshi, A., Dasgupta, S., and Wangikar, P. P. (2016) Metabolic model of Synechococcus sp. PCC 7002: Prediction of flux distribution and network modification for enhanced biofuel production. Bioresour. Technol. 213, 190 –197 CrossRef Medline
    • (2016) Bioresour. Technol. , vol.213 , pp. 190-197
    • Hendry, J.I.1    Prasannan, C.B.2    Joshi, A.3    Dasgupta, S.4    Wangikar, P.P.5
  • 37
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi, S., Higashide, W., and Liao, J. C. (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177–1180 CrossRef Medline
    • (2009) Nat. Biotechnol. , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 38
    • 84872862096 scopus 로고    scopus 로고
    • Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
    • Oliver, J. W., Machado, I. M., Yoneda, H., and Atsumi, S. (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. U.S.A. 110, 1249 –1254 CrossRef Medline
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1249-1254
    • Oliver, J.W.1    Machado, I.M.2    Yoneda, H.3    Atsumi, S.4
  • 39
    • 85008219283 scopus 로고    scopus 로고
    • Improvement of 1,3-pro-panediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions
    • Hirokawa, Y., Maki, Y., and Hanai, T. (2017) Improvement of 1,3-pro-panediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metab. Eng. 39, 192–199 CrossRef Medline
    • (2017) Metab. Eng. , vol.39 , pp. 192-199
    • Hirokawa, Y.1    Maki, Y.2    Hanai, T.3
  • 40
    • 84867643979 scopus 로고    scopus 로고
    • 2 in cyanobacterium Synechococcus elongatus PCC 7942 and characterization of the native acetohydroxyacid synthase
    • 2 in cyanobacterium Synechococcus elongatus PCC 7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 5, 9574 –9583 CrossRef
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9574-9583
    • Shen, C.R.1    Liao, J.C.2
  • 43
    • 84901844777 scopus 로고    scopus 로고
    • Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942
    • Li, X., Shen, C. R., and Liao, J. C. (2014) Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynth. Res. 120, 301–310 CrossRef Medline
    • (2014) Photosynth. Res. , vol.120 , pp. 301-310
    • Li, X.1    Shen, C.R.2    Liao, J.C.3
  • 44
    • 84964247550 scopus 로고    scopus 로고
    • A carbon sink pathway increases carbon productivity in cyanobacteria
    • Oliver, J. W., and Atsumi, S. (2015) A carbon sink pathway increases carbon productivity in cyanobacteria. Metab. Eng. 29, 106 –112 CrossRef Medline
    • (2015) Metab. Eng. , vol.29 , pp. 106-112
    • Oliver, J.W.1    Atsumi, S.2
  • 46
    • 84925128834 scopus 로고    scopus 로고
    • Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway
    • Hirokawa, Y., Suzuki, I., and Hanai, T. (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J. Biosci. Bioeng. 119, 585–590 CrossRef Medline
    • (2015) J. Biosci. Bioeng. , vol.119 , pp. 585-590
    • Hirokawa, Y.1    Suzuki, I.2    Hanai, T.3
  • 47
    • 84885166683 scopus 로고    scopus 로고
    • Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light
    • Kusakabe, T., Tatsuke, T., Tsuruno, K., Hirokawa, Y., Atsumi, S., Liao, J. C., and Hanai, T. (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng. 20, 101–108 CrossRef Medline
    • (2013) Metab. Eng. , vol.20 , pp. 101-108
    • Kusakabe, T.1    Tatsuke, T.2    Tsuruno, K.3    Hirokawa, Y.4    Atsumi, S.5    Liao, J.C.6    Hanai, T.7
  • 49
    • 79955565417 scopus 로고    scopus 로고
    • Fatty acid production in genetically modified cyanobacteria
    • Liu, X., Sheng, J., and Curtiss, R., 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 108, 6899 – 6904 CrossRef Medline
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 6899-6904
    • Liu, X.1    Sheng, J.2    Curtiss, R.3
  • 50
    • 84862197287 scopus 로고    scopus 로고
    • Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide
    • Zhou, J., Zhang, H., Zhang, Y., Li, Y., and Ma, Y. (2012) Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab. Eng. 14, 394 – 400 CrossRef Medline
    • (2012) Metab. Eng. , vol.14 , pp. 394-400
    • Zhou, J.1    Zhang, H.2    Zhang, Y.3    Li, Y.4    Ma, Y.5
  • 51
    • 84877059594 scopus 로고    scopus 로고
    • Engineering cyanobacteria to improve photosynthetic production of alka (e) nes
    • Wang, W., Liu, X., and Lu, X. (2013) Engineering cyanobacteria to improve photosynthetic production of alka (e) nes. Biotechnol. Biofuels 6, 69 CrossRef Medline
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 69
    • Wang, W.1    Liu, X.2    Lu, X.3
  • 56
    • 84995394536 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for the photosynthetic production of succinate
    • Lan, E. I., and Wei, C. T. (2016) Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab. Eng. 38, 483– 493 CrossRef Medline
    • (2016) Metab. Eng. , vol.38 , pp. 483-493
    • Lan, E.I.1    Wei, C.T.2
  • 57
    • 77955572487 scopus 로고    scopus 로고
    • Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium
    • McNeely, K., Xu, Y., Bennette, N., Bryant, D. A., and Dismukes, G. C. (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol. 76, 5032–5038 CrossRef Medline
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 5032-5038
    • McNeely, K.1    Xu, Y.2    Bennette, N.3    Bryant, D.A.4    Dismukes, G.C.5
  • 58
    • 85020485524 scopus 로고    scopus 로고
    • Gene essentiality, conservation index and co-evolution of genes in cyanobacteria
    • Tiruveedula, G. S. S., and Wangikar, P. P. (2017) Gene essentiality, conservation index and co-evolution of genes in cyanobacteria. PLoS ONE 12, e0178565 CrossRef Medline
    • (2017) PLoS ONE , vol.12 , pp. e0178565
    • Tiruveedula, G.S.S.1    Wangikar, P.P.2
  • 59
    • 84903382875 scopus 로고    scopus 로고
    • Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. Strain PCC 7002 from an oceanic environment
    • Aikawa, S., Nishida, A., Ho, S.-H., Chang, J.-S., Hasunuma, T., and Kondo, A. (2014) Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol. Biofuels 7, 88 CrossRef Medline
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 88
    • Aikawa, S.1    Nishida, A.2    Ho, S.-H.3    Chang, J.-S.4    Hasunuma, T.5    Kondo, A.6
  • 60
    • 0000341849 scopus 로고
    • Ionic osmoregulation during salt adaptation of the cyanobacterium Synechococcus 6311
    • Blumwald, E., Mehlhorn, R. J., and Packer, L. (1983) Ionic osmoregulation during salt adaptation of the cyanobacterium Synechococcus 6311. Plant Physiol. 73, 377–380 CrossRef Medline
    • (1983) Plant Physiol. , vol.73 , pp. 377-380
    • Blumwald, E.1    Mehlhorn, R.J.2    Packer, L.3
  • 61
    • 84865289744 scopus 로고    scopus 로고
    • Improving carbon fixation pathways
    • Ducat, D. C., and Silver, P. A. (2012) Improving carbon fixation pathways. Curr. Opin. Chem. Biol. 16, 337–344 CrossRef Medline
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 337-344
    • Ducat, D.C.1    Silver, P.A.2
  • 63
    • 85050641846 scopus 로고    scopus 로고
    • Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002
    • Davies, F. K., Work, V. H., Beliaev, A. S., and Posewitz, M. C. (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front. Bioeng. Biotechnol. 2, 21 Medline
    • (2014) Front. Bioeng. Biotechnol. , vol.2 , pp. 21
    • Davies, F.K.1    Work, V.H.2    Beliaev, A.S.3    Posewitz, M.C.4
  • 64
    • 84861172182 scopus 로고    scopus 로고
    • Rerouting carbon flux to enhance photosynthetic productivity
    • Ducat, D. C., Avelar-Rivas, J. A., Way, J. C., and Silver, P. A. (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 2660 –2668 CrossRef Medline
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 2660-2668
    • Ducat, D.C.1    Avelar-Rivas, J.A.2    Way, J.C.3    Silver, P.A.4
  • 65
    • 0036079707 scopus 로고    scopus 로고
    • Forty years of bacterial fatty acid synthesis
    • Rock, C. O., and Jackowski, S. (2002) Forty years of bacterial fatty acid synthesis. Biochem. Biophys. Res. Commun. 292, 1155–1166 CrossRef Medline
    • (2002) Biochem. Biophys. Res. Commun. , vol.292 , pp. 1155-1166
    • Rock, C.O.1    Jackowski, S.2
  • 66
    • 0000572933 scopus 로고
    • Hydrocarbons of blue-green algae: Geochemical significance
    • Winters, K., Parker, P. L., and van Baalen, C. (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163, 467– 468 CrossRef Medline
    • (1969) Science , vol.163 , pp. 467-468
    • Winters, K.1    Parker, P.L.2    Van Baalen, C.3
  • 68
    • 79960098416 scopus 로고    scopus 로고
    • Modular synthase-encoding gene involved in -olefin biosynthesis in Synechococcus sp. Strain PCC 7002
    • Mendez-Perez, D., Begemann, M. B., and Pfleger, B. F. (2011) Modular synthase-encoding gene involved in -olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 77, 4264 – 4267 CrossRef Medline
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4264-4267
    • Mendez-Perez, D.1    Begemann, M.B.2    Pfleger, B.F.3
  • 69
    • 77949494384 scopus 로고    scopus 로고
    • Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling
    • Kaczmarzyk, D., and Fulda, M. (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol. 152, 1598 –1610 CrossRef Medline
    • (2010) Plant Physiol. , vol.152 , pp. 1598-1610
    • Kaczmarzyk, D.1    Fulda, M.2
  • 70
    • 84881020602 scopus 로고    scopus 로고
    • RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium
    • Ruffing, A. M. (2013) RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium. Biotechnol. Biofuels 6, 113 CrossRef Medline
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 113
    • Ruffing, A.M.1
  • 71
    • 84883657058 scopus 로고    scopus 로고
    • Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria
    • Ruffing, A. M. (2013) Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria. J. Appl. Phycol. 25, 1495–1507 CrossRef
    • (2013) J. Appl. Phycol. , vol.25 , pp. 1495-1507
    • Ruffing, A.M.1
  • 72
    • 79952106852 scopus 로고    scopus 로고
    • Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria
    • Tan, X., Yao, L., Gao, Q., Wang, W., Qi, F., and Lu, X. (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab. Eng. 13, 169–176 CrossRef Medline
    • (2011) Metab. Eng. , vol.13 , pp. 169-176
    • Tan, X.1    Yao, L.2    Gao, Q.3    Wang, W.4    Qi, F.5    Lu, X.6
  • 74
    • 84930418742 scopus 로고    scopus 로고
    • Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes
    • Kageyama, H., Waditee-Sirisattha, R., Sirisattha, S., Tanaka, Y., Ma-hakhant, A., and Takabe, T. (2015) Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Curr. Microbiol. 71, 115–120 CrossRef Medline
    • (2015) Curr. Microbiol. , vol.71 , pp. 115-120
    • Kageyama, H.1    Waditee-Sirisattha, R.2    Sirisattha, S.3    Tanaka, Y.4    Ma-Hakhant, A.5    Takabe, T.6
  • 75
    • 84991018066 scopus 로고    scopus 로고
    • Microbial alkane production for jet fuel industry: Motivation, state of the art and perspectives
    • Jiménez-Díaz, L., Caballero, A., Pérez-Hernandez, N., and Segura, A. (2017) Microbial alkane production for jet fuel industry: Motivation, state of the art and perspectives. Microb. Biotechnol. 10, 103–124 Medline
    • (2017) Microb. Biotechnol. , vol.10 , pp. 103-124
    • Jiménez-Díaz, L.1    Caballero, A.2    Pérez-Hernandez, N.3    Segura, A.4
  • 76
    • 84864317274 scopus 로고    scopus 로고
    • Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942
    • Ruffing, A. M., and Jones, H. D. (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol. Bioeng. 109, 2190 –2199 CrossRef Medline
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2190-2199
    • Ruffing, A.M.1    Jones, H.D.2
  • 77
    • 79955564736 scopus 로고    scopus 로고
    • 2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass
    • 2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass. Proc. Natl. Acad. Sci. U.S.A. 108, 6905– 6908 CrossRef Medline
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 6905-6908
    • Liu, X.1    Fallon, S.2    Sheng, J.3    Curtiss, R.4
  • 78
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • Lindberg, P., Park, S., and Melis, A. (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12, 70 –79 CrossRef Medline
    • (2010) Metab. Eng. , vol.12 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 79
    • 84951740886 scopus 로고    scopus 로고
    • Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide
    • Englund, E., Andersen-Ranberg, J., Miao, R., Hamberger, B., and Lindberg, P. (2015) Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth. Biol. 4, 1270 –1278 CrossRef Medline
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1270-1278
    • Englund, E.1    Andersen-Ranberg, J.2    Miao, R.3    Hamberger, B.4    Lindberg, P.5
  • 82
    • 84881254797 scopus 로고    scopus 로고
    • Paradigm of monoterpene (-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria
    • Bentley, F. K., García-Cerdán, J. G., Chen, H.-C., and Melis, A. (2013) Paradigm of monoterpene (-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenergy Res. 6, 917–929 CrossRef
    • (2013) Bioenergy Res. , vol.6 , pp. 917-929
    • Bentley, F.K.1    García-Cerdán, J.G.2    Chen, H.-C.3    Melis, A.4
  • 83
    • 84943633967 scopus 로고    scopus 로고
    • A phycocyanin-phellandrene synthase fusion enhances recombinant protein expression and -phellan-drene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria)
    • Formighieri, C., and Melis, A. (2015) A phycocyanin-phellandrene synthase fusion enhances recombinant protein expression and -phellan-drene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab. Eng. 32, 116 –124 CrossRef Medline
    • (2015) Metab. Eng. , vol.32 , pp. 116-124
    • Formighieri, C.1    Melis, A.2
  • 84
    • 79953105514 scopus 로고    scopus 로고
    • The production of the sesquiterpene -caryophyllene in a transgenic strain of the cyanobacterium Synechocystis
    • Reinsvold, R. E., Jinkerson, R. E., Radakovits, R., Posewitz, M. C., and Basu, C. (2011) The production of the sesquiterpene -caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J. Plant Physiol. 168, 848 – 852 CrossRef Medline
    • (2011) J. Plant Physiol. , vol.168 , pp. 848-852
    • Reinsvold, R.E.1    Jinkerson, R.E.2    Radakovits, R.3    Posewitz, M.C.4    Basu, C.5
  • 87
    • 84872172091 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for the synthesis of plant natural products
    • Marienhagen, J., and Bott, M. (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J. Biotechnol. 163, 166 –178 CrossRef Medline
    • (2013) J. Biotechnol. , vol.163 , pp. 166-178
    • Marienhagen, J.1    Bott, M.2
  • 88
    • 65349184006 scopus 로고    scopus 로고
    • Opportunities in metabolic engineering to facilitate scalable alkaloid production
    • Leonard, E., Runguphan, W., O’Connor, S., and Prather, K. J. (2009) Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat. Chem. Biol. 5, 292–300 CrossRef Medline
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 292-300
    • Leonard, E.1    Runguphan, W.2    O’Connor, S.3    Prather, K.J.4
  • 89
    • 84962367258 scopus 로고    scopus 로고
    • Natural products as sources of new drugs from 1981 to 2014
    • Newman, D. J., and Cragg, G. M. (2016) Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629 – 661 CrossRef Medline
    • (2016) J. Nat. Prod. , vol.79 , pp. 629-661
    • Newman, D.J.1    Cragg, G.M.2
  • 90
    • 33748631825 scopus 로고    scopus 로고
    • Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms
    • Fischbach, M. A., and Walsh, C. T. (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468 –3496 CrossRef Medline
    • (2006) Chem. Rev. , vol.106 , pp. 3468-3496
    • Fischbach, M.A.1    Walsh, C.T.2
  • 91
    • 82955235174 scopus 로고    scopus 로고
    • Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes
    • Kehr, J. C., Gatte Picchi, D., and Dittmann, E. (2011) Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. Beil-stein J. Org. Chem. 7, 1622–1635 CrossRef Medline
    • (2011) Beil-Stein J. Org. Chem. , vol.7 , pp. 1622-1635
    • Kehr, J.C.1    Gatte Picchi, D.2    Dittmann, E.3
  • 92
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao, Z., Zhao, H., and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, e16 CrossRef Medline
    • (2009) Nucleic Acids Res. , vol.37 , pp. e16
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 93
    • 0034724272 scopus 로고    scopus 로고
    • Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic
    • Trauger, J. W., and Walsh, C. T. (2000) Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic. Proc. Natl. Acad. Sci. U.S.A. 97, 3112–3117 CrossRef Medline
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 3112-3117
    • Trauger, J.W.1    Walsh, C.T.2
  • 94
    • 54749115137 scopus 로고    scopus 로고
    • Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria
    • Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C., and Dittmann, E. (2008) Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Ed. Engl. 47, 7756 –7759 CrossRef Medline
    • (2008) Angew. Chem. Int. Ed. Engl. , vol.47 , pp. 7756-7759
    • Ziemert, N.1    Ishida, K.2    Liaimer, A.3    Hertweck, C.4    Dittmann, E.5
  • 95
    • 84859111197 scopus 로고    scopus 로고
    • Evaluation of Streptomyces coelicolor A3(2) as a heterologous expression host for the cyanobacterial protein kinase C activator lyngbyatoxin A
    • Jones, A. C., Ottilie, S., Eustáquio, A. S., Edwards, D. J., Gerwick, L., Moore, B. S., and Gerwick, W. H. (2012) Evaluation of Streptomyces coelicolor A3(2) as a heterologous expression host for the cyanobacterial protein kinase C activator lyngbyatoxin A. FEBS J. 279, 1243–1251 CrossRef Medline
    • (2012) FEBS J. , vol.279 , pp. 1243-1251
    • Jones, A.C.1    Ottilie, S.2    Eustáquio, A.S.3    Edwards, D.J.4    Gerwick, L.5    Moore, B.S.6    Gerwick, W.H.7
  • 96
    • 34247182988 scopus 로고    scopus 로고
    • Engineering Escherichia coli for production of functionalized terpenoids using plant P450s
    • Chang, M. C., Eachus, R. A., Trieu, W., Ro, D.-K., and Keasling, J. D. (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3, 274 –277 CrossRef Medline
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 274-277
    • Chang, M.C.1    Eachus, R.A.2    Trieu, W.3    Ro, D.-K.4    Keasling, J.D.5
  • 97
    • 84904249329 scopus 로고    scopus 로고
    • Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: Evidence for light-driven biosynthesis
    • Lassen, L. M., Nielsen, A. Z., Olsen, C. E., Bialek, W., Jensen, K., Møller, B. L., and Jensen, P. E. (2014) Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: Evidence for light-driven biosynthesis. PLoS ONE 9, e102184 CrossRef Medline
    • (2014) PLoS ONE , vol.9 , pp. e102184
    • Lassen, L.M.1    Nielsen, A.Z.2    Olsen, C.E.3    Bialek, W.4    Jensen, K.5    Møller, B.L.6    Jensen, P.E.7
  • 98
    • 84893732929 scopus 로고    scopus 로고
    • Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid
    • Xue, Y., Zhang, Y., Grace, S., and He, Q. (2014) Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid. J. Appl. Phycol. 26, 219 –226 CrossRef
    • (2014) J. Appl. Phycol. , vol.26 , pp. 219-226
    • Xue, Y.1    Zhang, Y.2    Grace, S.3    He, Q.4
  • 100
    • 84987906286 scopus 로고    scopus 로고
    • Assessment of Anabaena sp. Strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: Production of Lyn-gbyatoxin A
    • Videau, P., Wells, K. N., Singh, A. J., Gerwick, W. H., and Philmus, B. (2016) Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: production of Lyn-gbyatoxin A. ACS Synth. Biol. 5, 978 –988 CrossRef Medline
    • (2016) ACS Synth. Biol. , vol.5 , pp. 978-988
    • Videau, P.1    Wells, K.N.2    Singh, A.J.3    Gerwick, W.H.4    Philmus, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.