-
1
-
-
84877076923
-
From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer
-
Angell, H., Galon, J., From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25 (2013), 261–267.
-
(2013)
Curr. Opin. Immunol.
, vol.25
, pp. 261-267
-
-
Angell, H.1
Galon, J.2
-
2
-
-
84960194345
-
Genomic analyses identify molecular subtypes of pancreatic cancer
-
Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.-M., Gingras, M.-C., Miller, D.K., Christ, A.N., Bruxner, T.J.C., Quinn, M.C., et al., Australian Pancreatic Cancer Genome Initiative. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531 (2016), 47–52.
-
(2016)
Nature
, vol.531
, pp. 47-52
-
-
Bailey, P.1
Chang, D.K.2
Nones, K.3
Johns, A.L.4
Patch, A.-M.5
Gingras, M.-C.6
Miller, D.K.7
Christ, A.N.8
Bruxner, T.J.C.9
Quinn, M.C.10
-
3
-
-
85044872777
-
-
ISODATA, a novel method of data analysis and pattern classification. In: Technical Report April 1965 prepared for the Information Sciences Branch of the Office of Naval Research. Stanford Research Institute - Clearinghouse for Federal Scientific and Technical Information
-
Ball, G.H., and Hall, D.J. (1965). ISODATA, a novel method of data analysis and pattern classification. In: Technical Report April 1965 prepared for the Information Sciences Branch of the Office of Naval Research. Stanford Research Institute - Clearinghouse for Federal Scientific and Technical Information, pp. 2–50.
-
(1965)
, pp. 2-50
-
-
Ball, G.H.1
Hall, D.J.2
-
4
-
-
0027453616
-
Model-Based Gaussian and Non-Gaussian Clustering
-
Banfield, J.D., Raftery, A.E., Model-Based Gaussian and Non-Gaussian Clustering. Biometrics 49 (1993), 803–821.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
5
-
-
85006040018
-
-
Transfer learning for cell nuclei classification in histopathology images. In Computer Vision – ECCV 2016 Workshops, G. Hua and H. Jégou, eds., Lecture Notes in Computer Science (Springer)
-
Bayramoglu, N., and Heikkila, J. (2016). Transfer learning for cell nuclei classification in histopathology images. In Computer Vision – ECCV 2016 Workshops, G. Hua and H. Jégou, eds., Lecture Notes in Computer Science (Springer), pp. 532–539.
-
(2016)
, pp. 532-539
-
-
Bayramoglu, N.1
Heikkila, J.2
-
6
-
-
80051932807
-
APCluster: an R package for affinity propagation clustering
-
Bodenhofer, U., Kothmeier, A., Hochreiter, S., APCluster: an R package for affinity propagation clustering. Bioinformatics 27 (2011), 2463–2464.
-
(2011)
Bioinformatics
, vol.27
, pp. 2463-2464
-
-
Bodenhofer, U.1
Kothmeier, A.2
Hochreiter, S.3
-
7
-
-
79952156460
-
TNM staging in colorectal cancer: T is for T cell and M is for memory
-
Broussard, E.K., Disis, M.L., TNM staging in colorectal cancer: T is for T cell and M is for memory. J. Clin. Oncol. 29 (2011), 601–603.
-
(2011)
J. Clin. Oncol.
, vol.29
, pp. 601-603
-
-
Broussard, E.K.1
Disis, M.L.2
-
8
-
-
84935009372
-
Genomic Classification of Cutaneous Melanoma
-
Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 161 (2015), 1681–1696.
-
(2015)
Cell
, vol.161
, pp. 1681-1696
-
-
-
9
-
-
79959838081
-
Integrated genomic analyses of ovarian carcinoma
-
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474 (2011), 609–615.
-
(2011)
Nature
, vol.474
, pp. 609-615
-
-
-
10
-
-
85032697928
-
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
-
Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171 (2017), 950–965.e28.
-
(2017)
Cell
, vol.171
, pp. 950-965.e28
-
-
-
11
-
-
85009106590
-
Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade
-
Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., Hackl, H., Trajanoski, Z., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 18 (2017), 248–262.
-
(2017)
Cell Rep.
, vol.18
, pp. 248-262
-
-
Charoentong, P.1
Finotello, F.2
Angelova, M.3
Mayer, C.4
Efremova, M.5
Rieder, D.6
Hackl, H.7
Trajanoski, Z.8
-
12
-
-
84997796752
-
DCAN: Deep contour-aware networks for object instance segmentation from histology images
-
Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., Heng, P.A., DCAN: Deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36 (2017), 135–146.
-
(2017)
Med. Image Anal.
, vol.36
, pp. 135-146
-
-
Chen, H.1
Qi, X.2
Yu, L.3
Dou, Q.4
Qin, J.5
Heng, P.A.6
-
13
-
-
84885899176
-
-
Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, eds., Lecture Notes in Computer Science (Springer)
-
Cireşan, D.C., Giusti, A., Gambardella, L.M., and Schmidhuber, J. (2013). Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, Volume 8150, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, eds., Lecture Notes in Computer Science (Springer), pp. 411–418.
-
(2013)
, vol.8150
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
14
-
-
85042301756
-
PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective
-
Published online December 30, 2017
-
Cooper, L.A., Demicco, E.G., Saltz, J.H., Powell, R.T., Rao, A., Lazar, A.J., PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J. Pathol., 2017, 10.1002/path.5028 Published online December 30, 2017.
-
(2017)
J. Pathol.
-
-
Cooper, L.A.1
Demicco, E.G.2
Saltz, J.H.3
Powell, R.T.4
Rao, A.5
Lazar, A.J.6
-
15
-
-
31644448492
-
Prognosticators of melanoma, the melanoma report, and the sentinel lymph node
-
Crowson, A.N., Magro, C.M., Mihm, M.C., Prognosticators of melanoma, the melanoma report, and the sentinel lymph node. Mod. Pathol. 19:Suppl 2 (2006), S71–S87.
-
(2006)
Mod. Pathol.
, vol.19
, pp. S71-S87
-
-
Crowson, A.N.1
Magro, C.M.2
Mihm, M.C.3
-
16
-
-
1942485113
-
Polychoric and Polyserial Correlations
-
N. Balakrishnan T. Colton B. Everitt W. Piegorsch F. Ruggeri J.L. Teugels John Wiley & Sons
-
Drasgow, F., Polychoric and Polyserial Correlations. Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., (eds.) Wiley StatsRef: Statistics Reference, 2014, John Wiley & Sons, 68–74.
-
(2014)
Wiley StatsRef: Statistics Reference
, pp. 68-74
-
-
Drasgow, F.1
-
17
-
-
85044877492
-
-
FDA allows marketing of first whole slide imaging system for digital pathology.
-
FDA News Release (2017). FDA allows marketing of first whole slide imaging system for digital pathology. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm552742.htm.
-
(2017)
-
-
FDA News Release1
-
18
-
-
33847172327
-
Clustering by passing messages between data points
-
Frey, B.J., Dueck, D., Clustering by passing messages between data points. Science 315 (2007), 972–976.
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
19
-
-
84858800620
-
The immune contexture in human tumours: impact on clinical outcome
-
Fridman, W.H., Pagès, F., Sautès-Fridman, C., Galon, J., The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12 (2012), 298–306.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 298-306
-
-
Fridman, W.H.1
Pagès, F.2
Sautès-Fridman, C.3
Galon, J.4
-
20
-
-
33749319703
-
Type, density, and location of immune cells within human colorectal tumors predict clinical outcome
-
Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313 (2006), 1960–1964.
-
(2006)
Science
, vol.313
, pp. 1960-1964
-
-
Galon, J.1
Costes, A.2
Sanchez-Cabo, F.3
Kirilovsky, A.4
Mlecnik, B.5
Lagorce-Pagès, C.6
Tosolini, M.7
Camus, M.8
Berger, A.9
Wind, P.10
-
21
-
-
84880704621
-
The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures
-
Galon, J., Angell, H.K., Bedognetti, D., Marincola, F.M., The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39 (2013), 11–26.
-
(2013)
Immunity
, vol.39
, pp. 11-26
-
-
Galon, J.1
Angell, H.K.2
Bedognetti, D.3
Marincola, F.M.4
-
22
-
-
84936143793
-
-
Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, Volume 32. JMLR
-
Graves, A., and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, Volume 32. JMLR, pp. 1764–1772.
-
(2014)
, pp. 1764-1772
-
-
Graves, A.1
Jaitly, N.2
-
23
-
-
85027413331
-
Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research
-
Hendry, S., Salgado, R., Gevaert, T., Russell, P.A., John, T., Thapa, B., Christie, M., van de Vijver, K., Estrada, M.V., Gonzalez-Ericsson, P.I., et al. Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research. Adv. Anat. Pathol. 24 (2017), 235–251.
-
(2017)
Adv. Anat. Pathol.
, vol.24
, pp. 235-251
-
-
Hendry, S.1
Salgado, R.2
Gevaert, T.3
Russell, P.A.4
John, T.5
Thapa, B.6
Christie, M.7
van de Vijver, K.8
Estrada, M.V.9
Gonzalez-Ericsson, P.I.10
-
24
-
-
85032022216
-
Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors
-
Hendry, S., Salgado, R., Gevaert, T., Russell, P.A., John, T., Thapa, B., Christie, M., van de Vijver, K., Estrada, M.V., Gonzalez-Ericsson, P.I., et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv. Anat. Pathol. 24 (2017), 311–335.
-
(2017)
Adv. Anat. Pathol.
, vol.24
, pp. 311-335
-
-
Hendry, S.1
Salgado, R.2
Gevaert, T.3
Russell, P.A.4
John, T.5
Thapa, B.6
Christie, M.7
van de Vijver, K.8
Estrada, M.V.9
Gonzalez-Ericsson, P.I.10
-
25
-
-
84986300630
-
-
(2016a). Patch-based convolutional neural network for whole slide tissue image classification. In: Computer Vision and Pattern Recognition. arXiv:1504.07947v5.
-
Hou, L., Samaras, D., Kurc, T., Gao, Y., Davis, J.E., and Saltz, J.H. (2016a). Patch-based convolutional neural network for whole slide tissue image classification. In: Computer Vision and Pattern Recognition. arXiv:1504.07947v5.
-
-
-
Hou, L.1
Samaras, D.2
Kurc, T.3
Gao, Y.4
Davis, J.E.5
Saltz, J.H.6
-
26
-
-
85006915396
-
Automatic histopathology image analysis with CNNs. In: 2016 New York Scientific Data Summit (NYSDS)
-
IEEE
-
Hou, L., Singh, K., Samaras, D., Kurc, T.M., Gao, Y., Seidman, R.J., Saltz, J.H., Automatic histopathology image analysis with CNNs. In: 2016 New York Scientific Data Summit (NYSDS). 2016, IEEE, 1–6.
-
(2016)
, pp. 1-6
-
-
Hou, L.1
Singh, K.2
Samaras, D.3
Kurc, T.M.4
Gao, Y.5
Seidman, R.J.6
Saltz, J.H.7
-
27
-
-
85044875205
-
-
Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. Computer Vision and Pattern Recognition. arXiv:1704.00406v2.
-
Hou, L., Nguyen, V., Samaras, D., Kurc, T.M., Gao, Y., Zhao, T., and Saltz, J.H. (2017). Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. Computer Vision and Pattern Recognition. arXiv:1704.00406v2.
-
(2017)
-
-
Hou, L.1
Nguyen, V.2
Samaras, D.3
Kurc, T.M.4
Gao, Y.5
Zhao, T.6
Saltz, J.H.7
-
28
-
-
85044878657
-
-
Densely connected convolutional networks. Computer Vision and Pattern Recognition. arXiv:1608.06993v5.
-
Huang, G., Liu, Z., Weinberger, K.Q., and van der Maaten, L. (2016). Densely connected convolutional networks. Computer Vision and Pattern Recognition. arXiv:1608.06993v5.
-
(2016)
-
-
Huang, G.1
Liu, Z.2
Weinberger, K.Q.3
van der Maaten, L.4
-
30
-
-
84904400251
-
Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer
-
Iglesia, M.D., Vincent, B.G., Parker, J.S., Hoadley, K.A., Carey, L.A., Perou, C.M., Serody, J.S., Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin. Cancer Res. 20 (2014), 3818–3829.
-
(2014)
Clin. Cancer Res.
, vol.20
, pp. 3818-3829
-
-
Iglesia, M.D.1
Vincent, B.G.2
Parker, J.S.3
Hoadley, K.A.4
Carey, L.A.5
Perou, C.M.6
Serody, J.S.7
-
31
-
-
85014834973
-
Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types
-
Iglesia, M.D., Parker, J.S., Hoadley, K.A., Serody, J.S., Perou, C.M., Vincent, B.G., Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types. J. Natl. Cancer Inst., 108, 2016, djw144.
-
(2016)
J. Natl. Cancer Inst.
, vol.108
, pp. djw144
-
-
Iglesia, M.D.1
Parker, J.S.2
Hoadley, K.A.3
Serody, J.S.4
Perou, C.M.5
Vincent, B.G.6
-
32
-
-
85117772309
-
Claudin-low bladder tumors are immune infiltrated and actively immune suppressed
-
Kardos, J., Chai, S., Mose, L.E., Selitsky, S.R., Krishnan, B., Saito, R., Iglesia, M.D., Milowsky, M.I., Parker, J.S., Kim, W.Y., Vincent, B.G., Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight, 1, 2016, e85902.
-
(2016)
JCI Insight
, vol.1
, pp. e85902
-
-
Kardos, J.1
Chai, S.2
Mose, L.E.3
Selitsky, S.R.4
Krishnan, B.5
Saito, R.6
Iglesia, M.D.7
Milowsky, M.I.8
Parker, J.S.9
Kim, W.Y.10
Vincent, B.G.11
-
33
-
-
85043458918
-
-
Ubernet: Training a universal convolutional neural network for low-,mid-, and high-level vision using diverse datasets and limited memory. Computer Vision and Pattern Recognition. arXiv:1609.02132v1.
-
Kokkinos, I. (2017). Ubernet: Training a universal convolutional neural network for low-,mid-, and high-level vision using diverse datasets and limited memory. Computer Vision and Pattern Recognition. arXiv:1609.02132v1.
-
(2017)
-
-
Kokkinos, I.1
-
34
-
-
84983347823
-
Comprehensive analyses of tumor immunity: implications for cancer immunotherapy
-
Li, B., Severson, E., Pignon, J.C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J.C., Rodig, S., et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol., 17, 2016, 174.
-
(2016)
Genome Biol.
, vol.17
, pp. 174
-
-
Li, B.1
Severson, E.2
Pignon, J.C.3
Zhao, H.4
Li, T.5
Novak, J.6
Jiang, P.7
Shen, H.8
Aster, J.C.9
Rodig, S.10
-
35
-
-
79959353548
-
Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction
-
T. Honkela W. Duch M. Girolami S. Kaski Springer
-
Masci, J., Meier, U., Cireşan, D., Schmidhuber, J., Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. Honkela, T., Duch, W., Girolami, M., Kaski, S., (eds.) Artificial Neural Networks and Machine Learning – ICANN 2011, 2011, Springer, 52–59.
-
(2011)
Artificial Neural Networks and Machine Learning – ICANN 2011
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
36
-
-
79952281183
-
Tumor immunosurveillance in human cancers
-
Mlecnik, B., Bindea, G., Pagès, F., Galon, J., Tumor immunosurveillance in human cancers. Cancer Metastasis Rev. 30 (2011), 5–12.
-
(2011)
Cancer Metastasis Rev.
, vol.30
, pp. 5-12
-
-
Mlecnik, B.1
Bindea, G.2
Pagès, F.3
Galon, J.4
-
37
-
-
79952093380
-
Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction
-
Mlecnik, B., Tosolini, M., Kirilovsky, A., Berger, A., Bindea, G., Meatchi, T., Bruneval, P., Trajanoski, Z., Fridman, W.H., Pagès, F., Galon, J., Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 29 (2011), 610–618.
-
(2011)
J. Clin. Oncol.
, vol.29
, pp. 610-618
-
-
Mlecnik, B.1
Tosolini, M.2
Kirilovsky, A.3
Berger, A.4
Bindea, G.5
Meatchi, T.6
Bruneval, P.7
Trajanoski, Z.8
Fridman, W.H.9
Pagès, F.10
Galon, J.11
-
38
-
-
85020202759
-
-
Center-focusing multitask CNN with injected features for classification of glioma nuclear images. Winter Conference on Applications of Computer Vision (WACV) - Computer Vision and Pattern Recognition. arXiv:1612.06825v2.
-
Murthy, V., Hou, L., Samaras, D., Kurc, T.M., and Saltz, J.H. (2017). Center-focusing multitask CNN with injected features for classification of glioma nuclear images. Winter Conference on Applications of Computer Vision (WACV) - Computer Vision and Pattern Recognition. arXiv:1612.06825v2.
-
(2017)
-
-
Murthy, V.1
Hou, L.2
Samaras, D.3
Kurc, T.M.4
Saltz, J.H.5
-
39
-
-
84928927858
-
Robust enumeration of cell subsets from tissue expression profiles
-
Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A., Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 (2015), 453–457.
-
(2015)
Nat. Methods
, vol.12
, pp. 453-457
-
-
Newman, A.M.1
Liu, C.L.2
Green, M.R.3
Gentles, A.J.4
Feng, W.5
Xu, Y.6
Hoang, C.D.7
Diehn, M.8
Alizadeh, A.A.9
-
40
-
-
84973879016
-
-
Learning Deconvolution Network for Semantic Segmentation. 2015 IEEE International Conference on Computer Vision (ICCV) - Computer Vision and Pattern Recognition. arXiv:1505.04366v1
-
Noh, H., Hong, S., and Han, B. (2015). Learning Deconvolution Network for Semantic Segmentation. 2015 IEEE International Conference on Computer Vision (ICCV) - Computer Vision and Pattern Recognition. arXiv:1505.04366v1, pp. 1520–1528.
-
(2015)
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
41
-
-
84864069017
-
-
Efficient learning of sparse representations with an energy-based model. Proceedings of the 19th International Conference on Neural Information Processing Systems
-
Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. Proceedings of the 19th International Conference on Neural Information Processing Systems, pp. 1137-1144.
-
(2006)
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
42
-
-
84986308404
-
-
You only look once: Unified, real-time object detection. Computer Vision and Pattern Recognition. arXiv:1506.02640v5.
-
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. Computer Vision and Pattern Recognition. arXiv:1506.02640v5.
-
(2016)
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
43
-
-
85044877219
-
-
Faster R-CNN: Towards real-time object detection with region proposal networks. In: Computer Vision and Pattern Recognition. arXiv:1506.01497v3.
-
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In: Computer Vision and Pattern Recognition. arXiv:1506.01497v3.
-
(2015)
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
44
-
-
84920962202
-
Molecular and genetic properties of tumors associated with local immune cytolytic activity
-
Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G., Hacohen, N., Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160 (2015), 48–61.
-
(2015)
Cell
, vol.160
, pp. 48-61
-
-
Rooney, M.S.1
Shukla, S.A.2
Wu, C.J.3
Getz, G.4
Hacohen, N.5
-
45
-
-
84884543901
-
Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class
-
Rutledge, W.C., Kong, J., Gao, J., Gutman, D.A., Cooper, L.A.D., Appin, C., Park, Y., Scarpace, L., Mikkelsen, T., Cohen, M.L., et al. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin. Cancer Res. 19 (2013), 4951–4960.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 4951-4960
-
-
Rutledge, W.C.1
Kong, J.2
Gao, J.3
Gutman, D.A.4
Cooper, L.A.D.5
Appin, C.6
Park, Y.7
Scarpace, L.8
Mikkelsen, T.9
Cohen, M.L.10
-
46
-
-
84924076132
-
The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014
-
Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., Wienert, S., Van den Eynden, G., Baehner, F.L., Penault-Llorca, F., et al., International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26 (2015), 259–271.
-
(2015)
Ann. Oncol.
, vol.26
, pp. 259-271
-
-
Salgado, R.1
Denkert, C.2
Demaria, S.3
Sirtaine, N.4
Klauschen, F.5
Pruneri, G.6
Wienert, S.7
Van den Eynden, G.8
Baehner, F.L.9
Penault-Llorca, F.10
-
47
-
-
85035006218
-
A Containerized Software System for Generation, Management, and Exploration of Features from Whole Slide Tissue Images
-
Saltz, J., Sharma, A., Iyer, G., Bremer, E., Wang, F., Jasniewski, A., DiPrima, T., Almeida, J.S., Gao, Y., Zhao, T., et al. A Containerized Software System for Generation, Management, and Exploration of Features from Whole Slide Tissue Images. Cancer Res. 77 (2017), e79–e82.
-
(2017)
Cancer Res.
, vol.77
, pp. e79-e82
-
-
Saltz, J.1
Sharma, A.2
Iyer, G.3
Bremer, E.4
Wang, F.5
Jasniewski, A.6
DiPrima, T.7
Almeida, J.S.8
Gao, Y.9
Zhao, T.10
-
48
-
-
85044877803
-
-
J. (1971). Clustering Methods Based on Likelihood Ratio Criteria. Biometrics
-
Scott, A.J., and Symons, M. J. (1971). Clustering Methods Based on Likelihood Ratio Criteria. Biometrics, 27, 387–397.
-
, vol.27
, pp. 387-397
-
-
Scott, A.J.1
Symons, M.2
-
49
-
-
85044873104
-
Framework for Data Management and Visualization of The National Lung Screening Trial Pathology Images
-
J. Pathol. Inform.
-
Sharma, A., Kazerouni, A., Saghar, N., Commean, P., Tarbox, L., Prior, F., Framework for Data Management and Visualization of The National Lung Screening Trial Pathology Images. Pathology Informatics Summit 2014, 2014, J. Pathol. Inform., S30–S31.
-
(2014)
Pathology Informatics Summit 2014
, pp. S30-S31
-
-
Sharma, A.1
Kazerouni, A.2
Saghar, N.3
Commean, P.4
Tarbox, L.5
Prior, F.6
-
50
-
-
85044874190
-
-
Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition. arXiv:1409.1556v6.
-
Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition. arXiv:1409.1556v6.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
51
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
Sirinukunwattana, K., Ahmed Raza, S.E., Yee-Wah Tsang, Snead, D.R., Cree, I.A., Rajpoot, N.M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35 (2016), 1196–1206.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
Ahmed Raza, S.E.2
Yee-Wah Tsang3
Snead, D.R.4
Cree, I.A.5
Rajpoot, N.M.6
-
52
-
-
84951749617
-
-
Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer)
-
Su, H., Xing, F., Kong, X., Xie, Y., Zhang, S., and Yang, L. (2015). Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Volume 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer), pp. 383–390.
-
(2015)
, vol.9351
, pp. 383-390
-
-
Su, H.1
Xing, F.2
Kong, X.3
Xie, Y.4
Zhang, S.5
Yang, L.6
-
53
-
-
85044872960
-
-
Theano: A Python framework for fast computation of mathematical expressions. Symbolic Computation; Learning; Mathematical Software. arXiv:1605.02688v1.
-
Theano Development Team (2016). Theano: A Python framework for fast computation of mathematical expressions. Symbolic Computation; Learning; Mathematical Software. arXiv:1605.02688v1.
-
(2016)
-
-
Theano Development Team1
-
54
-
-
85044934017
-
The Immune Landscape of Cancer
-
Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Yang, T.-H.O., Porta-Pardo, E., Gao, G., Plaisier, C.L., Eddy, J.A., et al. The Immune Landscape of Cancer. Immunity, 48, 2018, 10.1016/j.immuni.2018.03.023.
-
(2018)
Immunity
, vol.48
-
-
Thorsson, V.1
Gibbs, D.L.2
Brown, S.D.3
Wolf, D.4
Bortone, D.S.5
Yang, T.-H.O.6
Porta-Pardo, E.7
Gao, G.8
Plaisier, C.L.9
Eddy, J.A.10
-
55
-
-
84859401430
-
Cancer and inflammation: an old intuition with rapidly evolving new concepts
-
Trinchieri, G., Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30 (2012), 677–706.
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 677-706
-
-
Trinchieri, G.1
-
56
-
-
84996486520
-
-
Subtype cell detection with an accelerated deep convolution neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer)
-
Wang, S., Yao, J., Xu, Z., and Huang, J. (2016). Subtype cell detection with an accelerated deep convolution neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Volume 9901, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer), pp. 640–648.
-
(2016)
, vol.9901
, pp. 640-648
-
-
Wang, S.1
Yao, J.2
Xu, Z.3
Huang, J.4
-
57
-
-
77957570386
-
Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types
-
Wilkerson, M.D., Yin, X., Hoadley, K.A., Liu, Y., Hayward, M.C., Cabanski, C.R., Muldrew, K., Miller, C.R., Randell, S.H., Socinski, M.A., et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin. Cancer Res. 16 (2010), 4864–4875.
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 4864-4875
-
-
Wilkerson, M.D.1
Yin, X.2
Hoadley, K.A.3
Liu, Y.4
Hayward, M.C.5
Cabanski, C.R.6
Muldrew, K.7
Miller, C.R.8
Randell, S.H.9
Socinski, M.A.10
-
58
-
-
84951843710
-
-
Deep voting: A robust approach toward nucleus localization in microscopy images. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer)
-
Xie, Y., Kong, X., Xing, F., Liu, F., Su, H., and Yang, L. (2015a). Deep voting: A robust approach toward nucleus localization in microscopy images. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Volume 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer), pp. 374–382.
-
(2015)
, vol.9351
, pp. 374-382
-
-
Xie, Y.1
Kong, X.2
Xing, F.3
Liu, F.4
Su, H.5
Yang, L.6
-
59
-
-
84951858138
-
-
Beyond classification: structured regression for robust cell detection using convolutional neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer)
-
Xie, Y., Xing, F., Kong, X., Su, H., and Yang, L. (2015b). Beyond classification: structured regression for robust cell detection using convolutional neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Volume 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer), pp. 358–365.
-
(2015)
, vol.9351
, pp. 358-365
-
-
Xie, Y.1
Xing, F.2
Kong, X.3
Su, H.4
Yang, L.5
-
60
-
-
84996486980
-
-
Detecting 10,000 cells in one second. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer)
-
Xu, Z., and Huang, J. (2016). Detecting 10,000 cells in one second. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Volume 9901, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer), pp. 676–684.
-
(2016)
, vol.9901
, pp. 676-684
-
-
Xu, Z.1
Huang, J.2
-
61
-
-
84946045951
-
-
Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
-
Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., and Chang, E.I.C. (2015) Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 947–951.
-
(2015)
, pp. 947-951
-
-
Xu, Y.1
Jia, Z.2
Ai, Y.3
Zhang, F.4
Lai, M.5
Chang, E.I.C.6
-
62
-
-
85044876601
-
-
Using machine methods to score tumor-infiltrating lymphocytes in lung cancer. USCAP 2017 Annual Meeting. Proffered papers, Section A.
-
Zhao, T., Hou, L., Nguyen, V., Gao, Y., Samaras, D., Kurc, T.M., and Saltz, J.H. (2017). Using machine methods to score tumor-infiltrating lymphocytes in lung cancer. USCAP 2017 Annual Meeting. Proffered papers, Section A.
-
(2017)
-
-
Zhao, T.1
Hou, L.2
Nguyen, V.3
Gao, Y.4
Samaras, D.5
Kurc, T.M.6
Saltz, J.H.7
|