메뉴 건너뛰기




Volumn 23, Issue 1, 2018, Pages 181-193.e7

Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

(739)  Saltz, Joel a   Gupta, Rajarsi a,d   Hou, Le b   Kurc, Tahsin a   Singh, Pankaj c   Nguyen, Vu b   Samaras, Dimitris b   Shroyer, Kenneth R d   Zhao, Tianhao d   Batiste, Rebecca d   Van Arnam, John e   Caesar Johnson, Samantha J h   Demchok, John A h   Felau, Ina h   Kasapi, Melpomeni h   Ferguson, Martin L h   Hutter, Carolyn M h   Sofia, Heidi J h   Tarnuzzer, Roy h   Wang, Zhining h   more..


Author keywords

artificial intelligence; bioinformatics; computer vision; deep learning; digital pathology; immuno oncology; lymphocytes; machine learning; tumor microenvironment; tumor infiltrating lymphocytes

Indexed keywords

EOSIN; HEMATOXYLIN;

EID: 85044586207     PISSN: None     EISSN: 22111247     Source Type: Journal    
DOI: 10.1016/j.celrep.2018.03.086     Document Type: Article
Times cited : (721)

References (62)
  • 1
    • 84877076923 scopus 로고    scopus 로고
    • From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer
    • Angell, H., Galon, J., From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25 (2013), 261–267.
    • (2013) Curr. Opin. Immunol. , vol.25 , pp. 261-267
    • Angell, H.1    Galon, J.2
  • 3
    • 85044872777 scopus 로고
    • ISODATA, a novel method of data analysis and pattern classification. In: Technical Report April 1965 prepared for the Information Sciences Branch of the Office of Naval Research. Stanford Research Institute - Clearinghouse for Federal Scientific and Technical Information
    • Ball, G.H., and Hall, D.J. (1965). ISODATA, a novel method of data analysis and pattern classification. In: Technical Report April 1965 prepared for the Information Sciences Branch of the Office of Naval Research. Stanford Research Institute - Clearinghouse for Federal Scientific and Technical Information, pp. 2–50.
    • (1965) , pp. 2-50
    • Ball, G.H.1    Hall, D.J.2
  • 4
    • 0027453616 scopus 로고
    • Model-Based Gaussian and Non-Gaussian Clustering
    • Banfield, J.D., Raftery, A.E., Model-Based Gaussian and Non-Gaussian Clustering. Biometrics 49 (1993), 803–821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 85006040018 scopus 로고    scopus 로고
    • Transfer learning for cell nuclei classification in histopathology images. In Computer Vision – ECCV 2016 Workshops, G. Hua and H. Jégou, eds., Lecture Notes in Computer Science (Springer)
    • Bayramoglu, N., and Heikkila, J. (2016). Transfer learning for cell nuclei classification in histopathology images. In Computer Vision – ECCV 2016 Workshops, G. Hua and H. Jégou, eds., Lecture Notes in Computer Science (Springer), pp. 532–539.
    • (2016) , pp. 532-539
    • Bayramoglu, N.1    Heikkila, J.2
  • 6
    • 80051932807 scopus 로고    scopus 로고
    • APCluster: an R package for affinity propagation clustering
    • Bodenhofer, U., Kothmeier, A., Hochreiter, S., APCluster: an R package for affinity propagation clustering. Bioinformatics 27 (2011), 2463–2464.
    • (2011) Bioinformatics , vol.27 , pp. 2463-2464
    • Bodenhofer, U.1    Kothmeier, A.2    Hochreiter, S.3
  • 7
    • 79952156460 scopus 로고    scopus 로고
    • TNM staging in colorectal cancer: T is for T cell and M is for memory
    • Broussard, E.K., Disis, M.L., TNM staging in colorectal cancer: T is for T cell and M is for memory. J. Clin. Oncol. 29 (2011), 601–603.
    • (2011) J. Clin. Oncol. , vol.29 , pp. 601-603
    • Broussard, E.K.1    Disis, M.L.2
  • 8
    • 84935009372 scopus 로고    scopus 로고
    • Genomic Classification of Cutaneous Melanoma
    • Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 161 (2015), 1681–1696.
    • (2015) Cell , vol.161 , pp. 1681-1696
  • 9
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474 (2011), 609–615.
    • (2011) Nature , vol.474 , pp. 609-615
  • 10
    • 85032697928 scopus 로고    scopus 로고
    • Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
    • Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171 (2017), 950–965.e28.
    • (2017) Cell , vol.171 , pp. 950-965.e28
  • 11
    • 85009106590 scopus 로고    scopus 로고
    • Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade
    • Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., Hackl, H., Trajanoski, Z., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 18 (2017), 248–262.
    • (2017) Cell Rep. , vol.18 , pp. 248-262
    • Charoentong, P.1    Finotello, F.2    Angelova, M.3    Mayer, C.4    Efremova, M.5    Rieder, D.6    Hackl, H.7    Trajanoski, Z.8
  • 12
    • 84997796752 scopus 로고    scopus 로고
    • DCAN: Deep contour-aware networks for object instance segmentation from histology images
    • Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., Heng, P.A., DCAN: Deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36 (2017), 135–146.
    • (2017) Med. Image Anal. , vol.36 , pp. 135-146
    • Chen, H.1    Qi, X.2    Yu, L.3    Dou, Q.4    Qin, J.5    Heng, P.A.6
  • 13
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, eds., Lecture Notes in Computer Science (Springer)
    • Cireşan, D.C., Giusti, A., Gambardella, L.M., and Schmidhuber, J. (2013). Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, Volume 8150, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, eds., Lecture Notes in Computer Science (Springer), pp. 411–418.
    • (2013) , vol.8150 , pp. 411-418
    • Cireşan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 14
    • 85042301756 scopus 로고    scopus 로고
    • PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective
    • Published online December 30, 2017
    • Cooper, L.A., Demicco, E.G., Saltz, J.H., Powell, R.T., Rao, A., Lazar, A.J., PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J. Pathol., 2017, 10.1002/path.5028 Published online December 30, 2017.
    • (2017) J. Pathol.
    • Cooper, L.A.1    Demicco, E.G.2    Saltz, J.H.3    Powell, R.T.4    Rao, A.5    Lazar, A.J.6
  • 15
    • 31644448492 scopus 로고    scopus 로고
    • Prognosticators of melanoma, the melanoma report, and the sentinel lymph node
    • Crowson, A.N., Magro, C.M., Mihm, M.C., Prognosticators of melanoma, the melanoma report, and the sentinel lymph node. Mod. Pathol. 19:Suppl 2 (2006), S71–S87.
    • (2006) Mod. Pathol. , vol.19 , pp. S71-S87
    • Crowson, A.N.1    Magro, C.M.2    Mihm, M.C.3
  • 16
    • 1942485113 scopus 로고    scopus 로고
    • Polychoric and Polyserial Correlations
    • N. Balakrishnan T. Colton B. Everitt W. Piegorsch F. Ruggeri J.L. Teugels John Wiley & Sons
    • Drasgow, F., Polychoric and Polyserial Correlations. Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., (eds.) Wiley StatsRef: Statistics Reference, 2014, John Wiley & Sons, 68–74.
    • (2014) Wiley StatsRef: Statistics Reference , pp. 68-74
    • Drasgow, F.1
  • 17
    • 85044877492 scopus 로고    scopus 로고
    • FDA allows marketing of first whole slide imaging system for digital pathology.
    • FDA News Release (2017). FDA allows marketing of first whole slide imaging system for digital pathology. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm552742.htm.
    • (2017)
    • FDA News Release1
  • 18
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B.J., Dueck, D., Clustering by passing messages between data points. Science 315 (2007), 972–976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 19
    • 84858800620 scopus 로고    scopus 로고
    • The immune contexture in human tumours: impact on clinical outcome
    • Fridman, W.H., Pagès, F., Sautès-Fridman, C., Galon, J., The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12 (2012), 298–306.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 298-306
    • Fridman, W.H.1    Pagès, F.2    Sautès-Fridman, C.3    Galon, J.4
  • 21
    • 84880704621 scopus 로고    scopus 로고
    • The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures
    • Galon, J., Angell, H.K., Bedognetti, D., Marincola, F.M., The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39 (2013), 11–26.
    • (2013) Immunity , vol.39 , pp. 11-26
    • Galon, J.1    Angell, H.K.2    Bedognetti, D.3    Marincola, F.M.4
  • 22
    • 84936143793 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, Volume 32. JMLR
    • Graves, A., and Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning, Volume 32. JMLR, pp. 1764–1772.
    • (2014) , pp. 1764-1772
    • Graves, A.1    Jaitly, N.2
  • 23
    • 85027413331 scopus 로고    scopus 로고
    • Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research
    • Hendry, S., Salgado, R., Gevaert, T., Russell, P.A., John, T., Thapa, B., Christie, M., van de Vijver, K., Estrada, M.V., Gonzalez-Ericsson, P.I., et al. Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research. Adv. Anat. Pathol. 24 (2017), 235–251.
    • (2017) Adv. Anat. Pathol. , vol.24 , pp. 235-251
    • Hendry, S.1    Salgado, R.2    Gevaert, T.3    Russell, P.A.4    John, T.5    Thapa, B.6    Christie, M.7    van de Vijver, K.8    Estrada, M.V.9    Gonzalez-Ericsson, P.I.10
  • 24
    • 85032022216 scopus 로고    scopus 로고
    • Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors
    • Hendry, S., Salgado, R., Gevaert, T., Russell, P.A., John, T., Thapa, B., Christie, M., van de Vijver, K., Estrada, M.V., Gonzalez-Ericsson, P.I., et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv. Anat. Pathol. 24 (2017), 311–335.
    • (2017) Adv. Anat. Pathol. , vol.24 , pp. 311-335
    • Hendry, S.1    Salgado, R.2    Gevaert, T.3    Russell, P.A.4    John, T.5    Thapa, B.6    Christie, M.7    van de Vijver, K.8    Estrada, M.V.9    Gonzalez-Ericsson, P.I.10
  • 25
    • 84986300630 scopus 로고    scopus 로고
    • (2016a). Patch-based convolutional neural network for whole slide tissue image classification. In: Computer Vision and Pattern Recognition. arXiv:1504.07947v5.
    • Hou, L., Samaras, D., Kurc, T., Gao, Y., Davis, J.E., and Saltz, J.H. (2016a). Patch-based convolutional neural network for whole slide tissue image classification. In: Computer Vision and Pattern Recognition. arXiv:1504.07947v5.
    • Hou, L.1    Samaras, D.2    Kurc, T.3    Gao, Y.4    Davis, J.E.5    Saltz, J.H.6
  • 26
    • 85006915396 scopus 로고    scopus 로고
    • Automatic histopathology image analysis with CNNs. In: 2016 New York Scientific Data Summit (NYSDS)
    • IEEE
    • Hou, L., Singh, K., Samaras, D., Kurc, T.M., Gao, Y., Seidman, R.J., Saltz, J.H., Automatic histopathology image analysis with CNNs. In: 2016 New York Scientific Data Summit (NYSDS). 2016, IEEE, 1–6.
    • (2016) , pp. 1-6
    • Hou, L.1    Singh, K.2    Samaras, D.3    Kurc, T.M.4    Gao, Y.5    Seidman, R.J.6    Saltz, J.H.7
  • 27
    • 85044875205 scopus 로고    scopus 로고
    • Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. Computer Vision and Pattern Recognition. arXiv:1704.00406v2.
    • Hou, L., Nguyen, V., Samaras, D., Kurc, T.M., Gao, Y., Zhao, T., and Saltz, J.H. (2017). Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. Computer Vision and Pattern Recognition. arXiv:1704.00406v2.
    • (2017)
    • Hou, L.1    Nguyen, V.2    Samaras, D.3    Kurc, T.M.4    Gao, Y.5    Zhao, T.6    Saltz, J.H.7
  • 28
    • 85044878657 scopus 로고    scopus 로고
    • Densely connected convolutional networks. Computer Vision and Pattern Recognition. arXiv:1608.06993v5.
    • Huang, G., Liu, Z., Weinberger, K.Q., and van der Maaten, L. (2016). Densely connected convolutional networks. Computer Vision and Pattern Recognition. arXiv:1608.06993v5.
    • (2016)
    • Huang, G.1    Liu, Z.2    Weinberger, K.Q.3    van der Maaten, L.4
  • 33
    • 85043458918 scopus 로고    scopus 로고
    • Ubernet: Training a universal convolutional neural network for low-,mid-, and high-level vision using diverse datasets and limited memory. Computer Vision and Pattern Recognition. arXiv:1609.02132v1.
    • Kokkinos, I. (2017). Ubernet: Training a universal convolutional neural network for low-,mid-, and high-level vision using diverse datasets and limited memory. Computer Vision and Pattern Recognition. arXiv:1609.02132v1.
    • (2017)
    • Kokkinos, I.1
  • 38
    • 85020202759 scopus 로고    scopus 로고
    • Center-focusing multitask CNN with injected features for classification of glioma nuclear images. Winter Conference on Applications of Computer Vision (WACV) - Computer Vision and Pattern Recognition. arXiv:1612.06825v2.
    • Murthy, V., Hou, L., Samaras, D., Kurc, T.M., and Saltz, J.H. (2017). Center-focusing multitask CNN with injected features for classification of glioma nuclear images. Winter Conference on Applications of Computer Vision (WACV) - Computer Vision and Pattern Recognition. arXiv:1612.06825v2.
    • (2017)
    • Murthy, V.1    Hou, L.2    Samaras, D.3    Kurc, T.M.4    Saltz, J.H.5
  • 40
    • 84973879016 scopus 로고    scopus 로고
    • Learning Deconvolution Network for Semantic Segmentation. 2015 IEEE International Conference on Computer Vision (ICCV) - Computer Vision and Pattern Recognition. arXiv:1505.04366v1
    • Noh, H., Hong, S., and Han, B. (2015). Learning Deconvolution Network for Semantic Segmentation. 2015 IEEE International Conference on Computer Vision (ICCV) - Computer Vision and Pattern Recognition. arXiv:1505.04366v1, pp. 1520–1528.
    • (2015) , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 41
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model. Proceedings of the 19th International Conference on Neural Information Processing Systems
    • Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. Proceedings of the 19th International Conference on Neural Information Processing Systems, pp. 1137-1144.
    • (2006) , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 42
    • 84986308404 scopus 로고    scopus 로고
    • You only look once: Unified, real-time object detection. Computer Vision and Pattern Recognition. arXiv:1506.02640v5.
    • Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. Computer Vision and Pattern Recognition. arXiv:1506.02640v5.
    • (2016)
    • Redmon, J.1    Divvala, S.2    Girshick, R.3    Farhadi, A.4
  • 43
    • 85044877219 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks. In: Computer Vision and Pattern Recognition. arXiv:1506.01497v3.
    • Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In: Computer Vision and Pattern Recognition. arXiv:1506.01497v3.
    • (2015)
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 44
    • 84920962202 scopus 로고    scopus 로고
    • Molecular and genetic properties of tumors associated with local immune cytolytic activity
    • Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G., Hacohen, N., Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160 (2015), 48–61.
    • (2015) Cell , vol.160 , pp. 48-61
    • Rooney, M.S.1    Shukla, S.A.2    Wu, C.J.3    Getz, G.4    Hacohen, N.5
  • 45
  • 47
    • 85035006218 scopus 로고    scopus 로고
    • A Containerized Software System for Generation, Management, and Exploration of Features from Whole Slide Tissue Images
    • Saltz, J., Sharma, A., Iyer, G., Bremer, E., Wang, F., Jasniewski, A., DiPrima, T., Almeida, J.S., Gao, Y., Zhao, T., et al. A Containerized Software System for Generation, Management, and Exploration of Features from Whole Slide Tissue Images. Cancer Res. 77 (2017), e79–e82.
    • (2017) Cancer Res. , vol.77 , pp. e79-e82
    • Saltz, J.1    Sharma, A.2    Iyer, G.3    Bremer, E.4    Wang, F.5    Jasniewski, A.6    DiPrima, T.7    Almeida, J.S.8    Gao, Y.9    Zhao, T.10
  • 48
    • 85044877803 scopus 로고    scopus 로고
    • J. (1971). Clustering Methods Based on Likelihood Ratio Criteria. Biometrics
    • Scott, A.J., and Symons, M. J. (1971). Clustering Methods Based on Likelihood Ratio Criteria. Biometrics, 27, 387–397.
    • , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.2
  • 49
    • 85044873104 scopus 로고    scopus 로고
    • Framework for Data Management and Visualization of The National Lung Screening Trial Pathology Images
    • J. Pathol. Inform.
    • Sharma, A., Kazerouni, A., Saghar, N., Commean, P., Tarbox, L., Prior, F., Framework for Data Management and Visualization of The National Lung Screening Trial Pathology Images. Pathology Informatics Summit 2014, 2014, J. Pathol. Inform., S30–S31.
    • (2014) Pathology Informatics Summit 2014 , pp. S30-S31
    • Sharma, A.1    Kazerouni, A.2    Saghar, N.3    Commean, P.4    Tarbox, L.5    Prior, F.6
  • 50
    • 85044874190 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition. arXiv:1409.1556v6.
    • Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition. arXiv:1409.1556v6.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 51
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • Sirinukunwattana, K., Ahmed Raza, S.E., Yee-Wah Tsang, Snead, D.R., Cree, I.A., Rajpoot, N.M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35 (2016), 1196–1206.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1196-1206
    • Sirinukunwattana, K.1    Ahmed Raza, S.E.2    Yee-Wah Tsang3    Snead, D.R.4    Cree, I.A.5    Rajpoot, N.M.6
  • 52
    • 84951749617 scopus 로고    scopus 로고
    • Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer)
    • Su, H., Xing, F., Kong, X., Xie, Y., Zhang, S., and Yang, L. (2015). Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Volume 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer), pp. 383–390.
    • (2015) , vol.9351 , pp. 383-390
    • Su, H.1    Xing, F.2    Kong, X.3    Xie, Y.4    Zhang, S.5    Yang, L.6
  • 53
    • 85044872960 scopus 로고    scopus 로고
    • Theano: A Python framework for fast computation of mathematical expressions. Symbolic Computation; Learning; Mathematical Software. arXiv:1605.02688v1.
    • Theano Development Team (2016). Theano: A Python framework for fast computation of mathematical expressions. Symbolic Computation; Learning; Mathematical Software. arXiv:1605.02688v1.
    • (2016)
    • Theano Development Team1
  • 55
    • 84859401430 scopus 로고    scopus 로고
    • Cancer and inflammation: an old intuition with rapidly evolving new concepts
    • Trinchieri, G., Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30 (2012), 677–706.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 677-706
    • Trinchieri, G.1
  • 56
    • 84996486520 scopus 로고    scopus 로고
    • Subtype cell detection with an accelerated deep convolution neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer)
    • Wang, S., Yao, J., Xu, Z., and Huang, J. (2016). Subtype cell detection with an accelerated deep convolution neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Volume 9901, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer), pp. 640–648.
    • (2016) , vol.9901 , pp. 640-648
    • Wang, S.1    Yao, J.2    Xu, Z.3    Huang, J.4
  • 58
    • 84951843710 scopus 로고    scopus 로고
    • Deep voting: A robust approach toward nucleus localization in microscopy images. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer)
    • Xie, Y., Kong, X., Xing, F., Liu, F., Su, H., and Yang, L. (2015a). Deep voting: A robust approach toward nucleus localization in microscopy images. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Volume 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer), pp. 374–382.
    • (2015) , vol.9351 , pp. 374-382
    • Xie, Y.1    Kong, X.2    Xing, F.3    Liu, F.4    Su, H.5    Yang, L.6
  • 59
    • 84951858138 scopus 로고    scopus 로고
    • Beyond classification: structured regression for robust cell detection using convolutional neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer)
    • Xie, Y., Xing, F., Kong, X., Su, H., and Yang, L. (2015b). Beyond classification: structured regression for robust cell detection using convolutional neural network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Volume 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Lecture Notes in Computer Science (Springer), pp. 358–365.
    • (2015) , vol.9351 , pp. 358-365
    • Xie, Y.1    Xing, F.2    Kong, X.3    Su, H.4    Yang, L.5
  • 60
    • 84996486980 scopus 로고    scopus 로고
    • Detecting 10,000 cells in one second. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer)
    • Xu, Z., and Huang, J. (2016). Detecting 10,000 cells in one second. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Volume 9901, S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, eds., Lecture Notes in Computer Science (Springer), pp. 676–684.
    • (2016) , vol.9901 , pp. 676-684
    • Xu, Z.1    Huang, J.2
  • 61
    • 84946045951 scopus 로고    scopus 로고
    • Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    • Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., and Chang, E.I.C. (2015) Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 947–951.
    • (2015) , pp. 947-951
    • Xu, Y.1    Jia, Z.2    Ai, Y.3    Zhang, F.4    Lai, M.5    Chang, E.I.C.6
  • 62
    • 85044876601 scopus 로고    scopus 로고
    • Using machine methods to score tumor-infiltrating lymphocytes in lung cancer. USCAP 2017 Annual Meeting. Proffered papers, Section A.
    • Zhao, T., Hou, L., Nguyen, V., Gao, Y., Samaras, D., Kurc, T.M., and Saltz, J.H. (2017). Using machine methods to score tumor-infiltrating lymphocytes in lung cancer. USCAP 2017 Annual Meeting. Proffered papers, Section A.
    • (2017)
    • Zhao, T.1    Hou, L.2    Nguyen, V.3    Gao, Y.4    Samaras, D.5    Kurc, T.M.6    Saltz, J.H.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.