-
1
-
-
85009935079
-
-
Brain tumor statistics. http://www.abta.org/about-us/news/brain-tumor-statistics/.
-
-
-
Tumor Statistics, B.1
-
3
-
-
85009852939
-
-
Non-small-cell lung carcinoma. http://www.cancer. org/cancer/lungcancer-non-smallcell/.
-
-
-
Lung Carcinoma, N.1
-
5
-
-
84879815802
-
Multiple instance classification: Review, taxonomy and comparative study
-
J. Amores. Multiple instance classification: Review, taxonomy and comparative study. AIJ, 2013.
-
(2013)
AIJ
-
-
Amores, J.1
-
6
-
-
85141266799
-
Support vector machines for multiple-instance learning
-
S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002.
-
(2002)
NIPS
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
7
-
-
84954340787
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. PAMI, 2013.
-
(2013)
PAMI
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
10
-
-
79955702502
-
Libsvm: A library for support vector machines
-
C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. TIST, 2011.
-
(2011)
TIST
-
-
Chang, C.-C.1
Lin, C.-J.2
-
11
-
-
84944315512
-
Stacked predictive sparse decomposition for classification of histology sections
-
H. Chang, Y. Zhou, A. Borowsky, K. Barner, P. Spellman, and B. Parvin. Stacked predictive sparse decomposition for classification of histology sections. IJCV, 2014.
-
(2014)
IJCV
-
-
Chang, H.1
Zhou, Y.2
Borowsky, A.3
Barner, K.4
Spellman, P.5
Parvin, B.6
-
12
-
-
84945230597
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv, 2014.
-
(2014)
ArXiv
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
13
-
-
84867875411
-
Multi-instance multilabel image classification: A neural approach
-
Z. Chen, Z. Chi, H. Fu, and D. Feng. Multi-instance multilabel image classification: A neural approach. Neurocomputing, 2013.
-
(2013)
Neurocomputing
-
-
Chen, Z.1
Chi, Z.2
Fu, H.3
Feng, D.4
-
15
-
-
84863116085
-
Integrated morphologic analysis for the identification and characterization of disease subtypes
-
L. A. Cooper, J. Kong, D. A. Gutman, F. Wang, J. Gao, C. Appin, S. Cholleti, T. Pan, A. Sharma, L. Scarpace, et al. Integrated morphologic analysis for the identification and characterization of disease subtypes. JAMIA, 2012.
-
(2012)
JAMIA
-
-
Cooper, L.A.1
Kong, J.2
Gutman, D.A.3
Wang, F.4
Gao, J.5
Appin, C.6
Cholleti, S.7
Pan, T.8
Sharma, A.9
Scarpace, L.10
-
16
-
-
84878582730
-
Automated gastric cancer diagnosis on h&e-stained sections; Ltraining a classifier on a large scale with multiple instance machine learning
-
E. Cosatto, P.-F. Laquerre, C. Malon, H.-P. Graf, A. Saito, T. Kiyuna, A. Marugame, and K. Kamijo. Automated gastric cancer diagnosis on h&e-stained sections; ltraining a classifier on a large scale with multiple instance machine learning. In Medical Imaging, 2013.
-
(2013)
Medical Imaging
-
-
Cosatto, E.1
Laquerre, P.-F.2
Malon, C.3
Graf, H.-P.4
Saito, A.5
Kiyuna, T.6
Marugame, A.7
Kamijo, K.8
-
17
-
-
84901774997
-
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
-
A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In Medical Imaging, 2014.
-
(2014)
Medical Imaging
-
-
Cruz-Roa, A.1
Basavanhally, A.2
González, F.3
Gilmore, H.4
Feldman, M.5
Ganesan, S.6
Shih, N.7
Tomaszewski, J.8
Madabhushi, A.9
-
18
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. AIJ, 1997.
-
(1997)
AIJ
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Pérez, T.3
-
19
-
-
33745155436
-
A Bayesian hierarchical model for learning natural scene categories
-
L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories. In CVPR, 2005.
-
(2005)
CVPR
-
-
Fei-Fei, L.1
Perona, P.2
-
20
-
-
77952349835
-
A review of multi-instance learning assumptions
-
J. Foulds and E. Frank. A review of multi-instance learning assumptions. Knowl Eng Rev, 2010.
-
(2010)
Knowl Eng Rev
-
-
Foulds, J.1
Frank, E.2
-
21
-
-
84872047310
-
Validation of interobserver agreement in lung cancer assessment: Hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: The 2004 world health organization classification and therapeutically relevant subsets
-
J. E. Grilley-Olson, D. T. Moore, K. O. Leslie, B. F. Qaqish, X. Yin, M. A. Socinski, T. E. Stinchcombe, L. B. Thorne, T. C. Allen, P. M. Banks, et al. Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 world health organization classification and therapeutically relevant subsets. Archives of pathology & laboratory medicine, 2013.
-
(2013)
Archives of Pathology & Laboratory Medicine
-
-
Grilley-Olson, J.E.1
Moore, D.T.2
Leslie, K.O.3
Qaqish, B.F.4
Yin, X.5
Socinski, M.A.6
Stinchcombe, T.E.7
Thorne, L.B.8
Allen, T.C.9
Banks, P.M.10
-
22
-
-
27444440563
-
Clarifying the diffuse gliomas an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma
-
M. Gupta, A. Djalilvand, and D. J. Brat. Clarifying the diffuse gliomas an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. AJCP, 2005.
-
(2005)
AJCP
-
-
Gupta, M.1
Djalilvand, A.2
Brat, D.J.3
-
23
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
84951968109
-
Improving human action recognition using score distribution and ranking
-
M. Hoai and A. Zisserman. Improving human action recognition using score distribution and ranking. In ACCV. 2014.
-
(2014)
ACCV.
-
-
Hoai, M.1
Zisserman, A.2
-
25
-
-
84949870156
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv, 2014.
-
(2014)
ArXiv
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
26
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
27
-
-
77956555614
-
Gaussian processes multiple instance learning
-
M. Kim and F. Torre. Gaussian processes multiple instance learning. In ICML, 2010.
-
(2010)
ICML
-
-
Kim, M.1
Torre, F.2
-
29
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
31
-
-
84867676354
-
An efficient parallel neural network-based multi-instance learning algorithm
-
C. H. Li, I. Gondra, and L. Liu. An efficient parallel neural network-based multi-instance learning algorithm. J Supercomput, 2012.
-
(2012)
J Supercomput
-
-
Li, C.H.1
Gondra, I.2
Liu, L.3
-
32
-
-
84977645211
-
Texture classification for rail surface condition evaluation
-
K. Ma, T. F. Y. Vicente, D. Samaras, M. Petrucci, and D. L. Magnus. Texture classification for rail surface condition evaluation. In WACV, 2016.
-
(2016)
WACV
-
-
Ma, K.1
Vicente, T.F.Y.2
Samaras, D.3
Petrucci, M.4
Magnus, D.L.5
-
33
-
-
84898935332
-
A framework for multipleinstance learning
-
O. Maron and T. Lozano-Pérez. A framework for multipleinstance learning. NIPS, 1998.
-
(1998)
NIPS
-
-
Maron, O.1
Lozano-Pérez, T.2
-
35
-
-
84944336364
-
Automated discrimination of lower and higher grade gliomas based on histopathological image analysis
-
H. S. Mousavi, V. Monga, G. Rao, and A. U. Rao. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. JPI, 2015.
-
(2015)
JPI
-
-
Mousavi, H.S.1
Monga, V.2
Rao, G.3
Rao, A.U.4
-
36
-
-
77953182042
-
Weakly supervised discriminative localization and classification: A joint learning process
-
M. H. Nguyen, L. Torresani, F. De La Torre, and C. Rother. Weakly supervised discriminative localization and classification: a joint learning process. In ICCV, 2009.
-
(2009)
ICCV
-
-
Nguyen, M.H.1
Torresani, L.2
De La Torre, F.3
Rother, C.4
-
37
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI, 2002.
-
(2002)
PAMI
-
-
Ojala, T.1
Pietikainen, M.2
Maenpaa, T.3
-
38
-
-
84919730581
-
Weakly supervised object recognition with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly supervised object recognition with convolutional neural networks. In NIPS.
-
NIPS
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
39
-
-
85041932110
-
Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. arXiv, 2015.
-
(2015)
ArXiv
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
40
-
-
84973905467
-
Fully convolutional multi-class multiple instance learning
-
D. Pathak, E. Shelhamer, J. Long, and T. Darrell. Fully convolutional multi-class multiple instance learning. arXiv, 2014.
-
(2014)
ArXiv
-
-
Pathak, D.1
Shelhamer, E.2
Long, J.3
Darrell, T.4
-
41
-
-
85009898596
-
Weakly supervised semantic segmentation with convolutional networks
-
P. O. Pinheiro and R. Collobert. Weakly supervised semantic segmentation with convolutional networks. arXiv, 2014.
-
(2014)
ArXiv
-
-
Pinheiro, P.O.1
Collobert, R.2
-
44
-
-
0034890852
-
Quantification of histochemical staining by color deconvolution
-
A. C. Ruifrok and D. A. Johnston. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol, 2001.
-
(2001)
Anal Quant Cytol Histol
-
-
Ruifrok, A.C.1
Johnston, D.A.2
-
45
-
-
84909643400
-
2d view aggregation for lymph node detection using a shallow hierarchy of linear classifiers
-
A. Seff, L. Lu, K. M. Cherry, H. R. Roth, J. Liu, S. Wang, J. Hoffman, E. B. Turkbey, and R. M. Summers. 2d view aggregation for lymph node detection using a shallow hierarchy of linear classifiers. In MICCAI. 2014.
-
(2014)
MICCAI.
-
-
Seff, A.1
Lu, L.2
Cherry, K.M.3
Roth, H.R.4
Liu, J.5
Wang, S.6
Hoffman, J.7
Turkbey, E.B.8
Summers, R.M.9
-
46
-
-
84978755117
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, 2014.
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
-
48
-
-
84933535674
-
Dfdl: Discriminative feature-oriented dictionary learning for histopathological image classification
-
T. H. Vu, H. S. Mousavi, V. Monga, U. Rao, and G. Rao. Dfdl: Discriminative feature-oriented dictionary learning for histopathological image classification. arXiv, 2015.
-
(2015)
ArXiv
-
-
Vu, T.H.1
Mousavi, H.S.2
Monga, V.3
Rao, U.4
Rao, G.5
-
49
-
-
74849099012
-
A two-level learning method for generalized multi-instance problems
-
N. Weidmann, E. Frank, and B. Pfahringer. A two-level learning method for generalized multi-instance problems. In ECML. 2003.
-
(2003)
ECML.
-
-
Weidmann, N.1
Frank, E.2
Pfahringer, B.3
-
50
-
-
84946045951
-
Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
-
Y. Xu, Z. Jia, Y. Ai, F. Zhang, M. Lai, E. I. Chang, et al. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In ICASSP, 2015.
-
(2015)
ICASSP
-
-
Xu, Y.1
Jia, Z.2
Ai, Y.3
Zhang, F.4
Lai, M.5
Chang, E.I.6
-
51
-
-
84905230329
-
Deep learning of feature representation with multiple instance learning for medical image analysis
-
Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, E. I. Chang, et al. Deep learning of feature representation with multiple instance learning for medical image analysis. In ICASSP, 2014.
-
(2014)
ICASSP
-
-
Xu, Y.1
Mo, T.2
Feng, Q.3
Zhong, P.4
Lai, M.5
Chang, E.I.6
-
52
-
-
84896123432
-
Weakly supervised histopathology cancer image segmentation and classification
-
Y. Xu, J.-Y. Zhu, I. Eric, C. Chang, M. Lai, and Z. Tu. Weakly supervised histopathology cancer image segmentation and classification. Medical image analysis, 2014.
-
(2014)
Medical Image Analysis
-
-
Xu, Y.1
Zhu, J.-Y.2
Eric, I.3
Chang, C.4
Lai, M.5
Tu, Z.6
-
54
-
-
84864049528
-
Multiple instance boosting for object detection
-
C. Zhang, J. C. Platt, and P. A. Viola. Multiple instance boosting for object detection. In NIPS, 2005.
-
(2005)
NIPS
-
-
Zhang, C.1
Platt, J.C.2
Viola, P.A.3
-
55
-
-
0012349465
-
Em-dd: An improved multiple-instance learning technique
-
Q. Zhang and S. A. Goldman. Em-dd: An improved multiple-instance learning technique. In NIPS, 2001.
-
(2001)
NIPS
-
-
Zhang, Q.1
Goldman, S.A.2
-
56
-
-
84911451297
-
Classification of histology sections via multispectral convolutional sparse coding
-
Y. Zhou, H. Chang, K. Barner, P. Spellman, and B. Parvin. Classification of histology sections via multispectral convolutional sparse coding. In CVPR, 2014.
-
(2014)
CVPR
-
-
Zhou, Y.1
Chang, H.2
Barner, K.3
Spellman, P.4
Parvin, B.5
-
57
-
-
1642337173
-
Neural networks for multiinstance learning
-
Z.-H. Zhou and M.-L. Zhang. Neural networks for multiinstance learning. In ICIIT, 2002.
-
(2002)
ICIIT
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
|