메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2424-2433

Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; DISEASES; MAXIMUM PRINCIPLE; NEURAL NETWORKS; PATTERN RECOGNITION; TISSUE;

EID: 84986300630     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.266     Document Type: Conference Paper
Times cited : (840)

References (57)
  • 1
    • 85009935079 scopus 로고    scopus 로고
    • Brain tumor statistics. http://www.abta.org/about-us/news/brain-tumor-statistics/.
    • Tumor Statistics, B.1
  • 3
    • 85009852939 scopus 로고    scopus 로고
    • Non-small-cell lung carcinoma. http://www.cancer. org/cancer/lungcancer-non-smallcell/.
    • Lung Carcinoma, N.1
  • 5
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • J. Amores. Multiple instance classification: Review, taxonomy and comparative study. AIJ, 2013.
    • (2013) AIJ
    • Amores, J.1
  • 6
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002.
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 7
    • 84954340787 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. PAMI, 2013.
    • (2013) PAMI
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 10
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. TIST, 2011.
    • (2011) TIST
    • Chang, C.-C.1    Lin, C.-J.2
  • 11
    • 84944315512 scopus 로고    scopus 로고
    • Stacked predictive sparse decomposition for classification of histology sections
    • H. Chang, Y. Zhou, A. Borowsky, K. Barner, P. Spellman, and B. Parvin. Stacked predictive sparse decomposition for classification of histology sections. IJCV, 2014.
    • (2014) IJCV
    • Chang, H.1    Zhou, Y.2    Borowsky, A.3    Barner, K.4    Spellman, P.5    Parvin, B.6
  • 12
    • 84945230597 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv, 2014.
    • (2014) ArXiv
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 13
    • 84867875411 scopus 로고    scopus 로고
    • Multi-instance multilabel image classification: A neural approach
    • Z. Chen, Z. Chi, H. Fu, and D. Feng. Multi-instance multilabel image classification: A neural approach. Neurocomputing, 2013.
    • (2013) Neurocomputing
    • Chen, Z.1    Chi, Z.2    Fu, H.3    Feng, D.4
  • 14
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Mitosis detection in breast cancer histology images with deep neural networks. In MICCAI. 2013.
    • (2013) MICCAI.
    • Cireşan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 16
    • 84878582730 scopus 로고    scopus 로고
    • Automated gastric cancer diagnosis on h&e-stained sections; Ltraining a classifier on a large scale with multiple instance machine learning
    • E. Cosatto, P.-F. Laquerre, C. Malon, H.-P. Graf, A. Saito, T. Kiyuna, A. Marugame, and K. Kamijo. Automated gastric cancer diagnosis on h&e-stained sections; ltraining a classifier on a large scale with multiple instance machine learning. In Medical Imaging, 2013.
    • (2013) Medical Imaging
    • Cosatto, E.1    Laquerre, P.-F.2    Malon, C.3    Graf, H.-P.4    Saito, A.5    Kiyuna, T.6    Marugame, A.7    Kamijo, K.8
  • 18
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. AIJ, 1997.
    • (1997) AIJ
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 19
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories. In CVPR, 2005.
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 20
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • J. Foulds and E. Frank. A review of multi-instance learning assumptions. Knowl Eng Rev, 2010.
    • (2010) Knowl Eng Rev
    • Foulds, J.1    Frank, E.2
  • 21
    • 84872047310 scopus 로고    scopus 로고
    • Validation of interobserver agreement in lung cancer assessment: Hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: The 2004 world health organization classification and therapeutically relevant subsets
    • J. E. Grilley-Olson, D. T. Moore, K. O. Leslie, B. F. Qaqish, X. Yin, M. A. Socinski, T. E. Stinchcombe, L. B. Thorne, T. C. Allen, P. M. Banks, et al. Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 world health organization classification and therapeutically relevant subsets. Archives of pathology & laboratory medicine, 2013.
    • (2013) Archives of Pathology & Laboratory Medicine
    • Grilley-Olson, J.E.1    Moore, D.T.2    Leslie, K.O.3    Qaqish, B.F.4    Yin, X.5    Socinski, M.A.6    Stinchcombe, T.E.7    Thorne, L.B.8    Allen, T.C.9    Banks, P.M.10
  • 22
    • 27444440563 scopus 로고    scopus 로고
    • Clarifying the diffuse gliomas an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma
    • M. Gupta, A. Djalilvand, and D. J. Brat. Clarifying the diffuse gliomas an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. AJCP, 2005.
    • (2005) AJCP
    • Gupta, M.1    Djalilvand, A.2    Brat, D.J.3
  • 23
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
    • (2015) ICCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 84951968109 scopus 로고    scopus 로고
    • Improving human action recognition using score distribution and ranking
    • M. Hoai and A. Zisserman. Improving human action recognition using score distribution and ranking. In ACCV. 2014.
    • (2014) ACCV.
    • Hoai, M.1    Zisserman, A.2
  • 27
    • 77956555614 scopus 로고    scopus 로고
    • Gaussian processes multiple instance learning
    • M. Kim and F. Torre. Gaussian processes multiple instance learning. In ICML, 2010.
    • (2010) ICML
    • Kim, M.1    Torre, F.2
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 31
    • 84867676354 scopus 로고    scopus 로고
    • An efficient parallel neural network-based multi-instance learning algorithm
    • C. H. Li, I. Gondra, and L. Liu. An efficient parallel neural network-based multi-instance learning algorithm. J Supercomput, 2012.
    • (2012) J Supercomput
    • Li, C.H.1    Gondra, I.2    Liu, L.3
  • 33
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multipleinstance learning
    • O. Maron and T. Lozano-Pérez. A framework for multipleinstance learning. NIPS, 1998.
    • (1998) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 35
    • 84944336364 scopus 로고    scopus 로고
    • Automated discrimination of lower and higher grade gliomas based on histopathological image analysis
    • H. S. Mousavi, V. Monga, G. Rao, and A. U. Rao. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. JPI, 2015.
    • (2015) JPI
    • Mousavi, H.S.1    Monga, V.2    Rao, G.3    Rao, A.U.4
  • 36
    • 77953182042 scopus 로고    scopus 로고
    • Weakly supervised discriminative localization and classification: A joint learning process
    • M. H. Nguyen, L. Torresani, F. De La Torre, and C. Rother. Weakly supervised discriminative localization and classification: a joint learning process. In ICCV, 2009.
    • (2009) ICCV
    • Nguyen, M.H.1    Torresani, L.2    De La Torre, F.3    Rother, C.4
  • 37
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI, 2002.
    • (2002) PAMI
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 38
    • 84919730581 scopus 로고    scopus 로고
    • Weakly supervised object recognition with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly supervised object recognition with convolutional neural networks. In NIPS.
    • NIPS
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 39
    • 85041932110 scopus 로고    scopus 로고
    • Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
    • G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. arXiv, 2015.
    • (2015) ArXiv
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4
  • 40
    • 84973905467 scopus 로고    scopus 로고
    • Fully convolutional multi-class multiple instance learning
    • D. Pathak, E. Shelhamer, J. Long, and T. Darrell. Fully convolutional multi-class multiple instance learning. arXiv, 2014.
    • (2014) ArXiv
    • Pathak, D.1    Shelhamer, E.2    Long, J.3    Darrell, T.4
  • 41
    • 85009898596 scopus 로고    scopus 로고
    • Weakly supervised semantic segmentation with convolutional networks
    • P. O. Pinheiro and R. Collobert. Weakly supervised semantic segmentation with convolutional networks. arXiv, 2014.
    • (2014) ArXiv
    • Pinheiro, P.O.1    Collobert, R.2
  • 44
    • 0034890852 scopus 로고    scopus 로고
    • Quantification of histochemical staining by color deconvolution
    • A. C. Ruifrok and D. A. Johnston. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol, 2001.
    • (2001) Anal Quant Cytol Histol
    • Ruifrok, A.C.1    Johnston, D.A.2
  • 46
    • 84978755117 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 48
    • 84933535674 scopus 로고    scopus 로고
    • Dfdl: Discriminative feature-oriented dictionary learning for histopathological image classification
    • T. H. Vu, H. S. Mousavi, V. Monga, U. Rao, and G. Rao. Dfdl: Discriminative feature-oriented dictionary learning for histopathological image classification. arXiv, 2015.
    • (2015) ArXiv
    • Vu, T.H.1    Mousavi, H.S.2    Monga, V.3    Rao, U.4    Rao, G.5
  • 49
    • 74849099012 scopus 로고    scopus 로고
    • A two-level learning method for generalized multi-instance problems
    • N. Weidmann, E. Frank, and B. Pfahringer. A two-level learning method for generalized multi-instance problems. In ECML. 2003.
    • (2003) ECML.
    • Weidmann, N.1    Frank, E.2    Pfahringer, B.3
  • 50
    • 84946045951 scopus 로고    scopus 로고
    • Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
    • Y. Xu, Z. Jia, Y. Ai, F. Zhang, M. Lai, E. I. Chang, et al. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In ICASSP, 2015.
    • (2015) ICASSP
    • Xu, Y.1    Jia, Z.2    Ai, Y.3    Zhang, F.4    Lai, M.5    Chang, E.I.6
  • 51
    • 84905230329 scopus 로고    scopus 로고
    • Deep learning of feature representation with multiple instance learning for medical image analysis
    • Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, E. I. Chang, et al. Deep learning of feature representation with multiple instance learning for medical image analysis. In ICASSP, 2014.
    • (2014) ICASSP
    • Xu, Y.1    Mo, T.2    Feng, Q.3    Zhong, P.4    Lai, M.5    Chang, E.I.6
  • 54
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • C. Zhang, J. C. Platt, and P. A. Viola. Multiple instance boosting for object detection. In NIPS, 2005.
    • (2005) NIPS
    • Zhang, C.1    Platt, J.C.2    Viola, P.A.3
  • 55
    • 0012349465 scopus 로고    scopus 로고
    • Em-dd: An improved multiple-instance learning technique
    • Q. Zhang and S. A. Goldman. Em-dd: An improved multiple-instance learning technique. In NIPS, 2001.
    • (2001) NIPS
    • Zhang, Q.1    Goldman, S.A.2
  • 56
    • 84911451297 scopus 로고    scopus 로고
    • Classification of histology sections via multispectral convolutional sparse coding
    • Y. Zhou, H. Chang, K. Barner, P. Spellman, and B. Parvin. Classification of histology sections via multispectral convolutional sparse coding. In CVPR, 2014.
    • (2014) CVPR
    • Zhou, Y.1    Chang, H.2    Barner, K.3    Spellman, P.4    Parvin, B.5
  • 57
    • 1642337173 scopus 로고    scopus 로고
    • Neural networks for multiinstance learning
    • Z.-H. Zhou and M.-L. Zhang. Neural networks for multiinstance learning. In ICIIT, 2002.
    • (2002) ICIIT
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.