-
1
-
-
84867887505
-
Diverse m-best solutions in markov random fields
-
Springer
-
D. Batra, P. Yadollahpour, A. Guzmn-Rivera, and G. Shakhnarovich. Diverse m-best solutions in markov random fields. In ECCV (5), volume 7576 of Lecture Notes in Computer Science, pages 1-16. Springer, 2012.
-
(2012)
ECCV (5), Volume 7576 of Lecture Notes in Computer Science
, pp. 1-16
-
-
Batra, D.1
Yadollahpour, P.2
Guzmn-Rivera, A.3
Shakhnarovich, G.4
-
3
-
-
56749170364
-
Automatic image colorization via multimodal predictions
-
G. Charpiat, M. Hofmann, and B. Schölkopf. Automatic image colorization via multimodal predictions. In Proceedings of the 10th European Conference on Computer Vision: Part III, ECCV '08, pages 126-139, 2008.
-
(2008)
Proceedings of the 10th European Conference on Computer Vision: Part III, ECCV '08
, pp. 126-139
-
-
Charpiat, G.1
Hofmann, M.2
Schölkopf, B.3
-
5
-
-
84973922960
-
Learning largescale automatic image colorization
-
IEEE Computer Society
-
A. Deshpande, J. Rock, and D. A. Forsyth. Learning largescale automatic image colorization. In ICCV, pages 567- 575. IEEE Computer Society, 2015.
-
(2015)
ICCV
, pp. 567-575
-
-
Deshpande, A.1
Rock, J.2
Forsyth, D.A.3
-
6
-
-
84983208884
-
Draw: A recurrent neural network for image generation
-
K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra. Draw: A recurrent neural network for image generation. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1462-1471, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1462-1471
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.4
Wierstra, D.5
-
8
-
-
84980049328
-
Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification
-
S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification. ACM Transactions on Graphics (Proc. of SIGGRAPH 2016), 35(4), 2016.
-
(2016)
ACM Transactions on Graphics (Proc. of SIGGRAPH 2016)
, vol.35
, Issue.4
-
-
Iizuka, S.1
Simo-Serra, E.2
Ishikawa, H.3
-
9
-
-
84946590546
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
abs/1502.03167
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.
-
(2015)
CoRR
-
-
Ioffe, S.1
Szegedy, C.2
-
12
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Weinberger, editors
-
D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep generative models. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3581-3589. 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
13
-
-
85018866833
-
Improving variational autoencoders with inverse autoregressive flow
-
D. P. Kingma, T. Salimans, R. Jzefowicz, X. Chen, I. Sutskever, and M. Welling. Improving variational autoencoders with inverse autoregressive flow. In NIPS, pages 4736-4744, 2016.
-
(2016)
NIPS
, pp. 4736-4744
-
-
Kingma, D.P.1
Salimans, T.2
Jzefowicz, R.3
Chen, X.4
Sutskever, I.5
Welling, M.6
-
15
-
-
84965156877
-
Deep convolutional inverse graphics network
-
T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graphics network. In Advances in Neural Information Processing Systems 28, pages 2539- 2547. 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 2539-2547
-
-
Kulkarni, T.D.1
Whitney, W.F.2
Kohli, P.3
Tenenbaum, J.4
-
17
-
-
84978312779
-
-
Springer International Publishing, Cham
-
E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li, and G. Hua. Labeled Faces in the Wild: A Survey, pages 189-248. Springer International Publishing, Cham, 2016.
-
(2016)
Labeled Faces in the Wild: A Survey
, pp. 189-248
-
-
Learned-Miller, E.1
Huang, G.B.2
RoyChowdhury, A.3
Li, H.4
Hua, G.5
-
18
-
-
12844287465
-
Colorization using optimization
-
Aug
-
A. Levin, D. Lischinski, and Y.Weiss. Colorization using optimization. ACM Trans. Graph., 23(3):689-694, Aug. 2004.
-
(2004)
ACM Trans. Graph
, vol.23
, Issue.3
, pp. 689-694
-
-
Levin, A.1
Lischinski, D.2
Weiss, Y.3
-
20
-
-
73049094323
-
Automatic colorization of grayscale images using multiple images on the web
-
New York, NY, USA
-
Y. Morimoto, Y. Taguchi, and T. Naemura. Automatic colorization of grayscale images using multiple images on the web. In SIGGRAPH 2009: Talks, SIGGRAPH '09, New York, NY, USA, 2009.
-
(2009)
SIGGRAPH 2009: Talks, SIGGRAPH '09
-
-
Morimoto, Y.1
Taguchi, Y.2
Naemura, T.3
-
21
-
-
84978298377
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
abs/1511.06434
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
-
(2015)
CoRR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
22
-
-
84947041871
-
ImageNet Large Scale Visual Recognition Challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.
-
(2015)
International Journal of Computer Vision (IJCV)
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
23
-
-
84965139640
-
Learning structured output representation using deep conditional generative models
-
Cambridge, MA, USA, MIT Press
-
K. Sohn, X. Yan, and H. Lee. Learning structured output representation using deep conditional generative models. In Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS'15, pages 3483- 3491, Cambridge, MA, USA, 2015. MIT Press.
-
(2015)
Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS'15
, pp. 3483-3491
-
-
Sohn, K.1
Yan, X.2
Lee, H.3
-
24
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Jan
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929- 1958, Jan. 2014.
-
(2014)
J. Mach. Learn. Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
27
-
-
85018923844
-
Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
-
T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Xue, T.1
Wu, J.2
Bouman, K.L.3
Freeman, W.T.4
-
28
-
-
84990026425
-
Attribute2image: Conditional image generation from visual attributes
-
X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Conditional image generation from visual attributes. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, pages 776-791, 2016.
-
(2016)
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, Part IV
, pp. 776-791
-
-
Yan, X.1
Yang, J.2
Sohn, K.3
Lee, H.4
-
29
-
-
85018506849
-
Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop
-
abs/1506.03365
-
F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365, 2015.
-
(2015)
CoRR
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
|