메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 764-772

Learning to align from scratch

Author keywords

[No Author keywords available]

Indexed keywords

FACE VERIFICATION; FEATURE REPRESENTATION; GROUP SPARSITIES; IMAGE DESCRIPTORS; IMPROVE PERFORMANCE; RESTRICTED BOLTZMANN MACHINE; UNSUPERVISED ALGORITHMS; UNSUPERVISED FEATURE LEARNING;

EID: 84877745091     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (302)

References (41)
  • 1
    • 79958695571 scopus 로고    scopus 로고
    • Similarity scores based on background samples
    • L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based on background samples. In ACCV, 2009.
    • (2009) ACCV
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 2
    • 84898923300 scopus 로고    scopus 로고
    • Multiple one-shots for utilizing class label information
    • Y. Taigman, L. Wolf, and T. Hassner. Multiple one-shots for utilizing class label information. In BMVC, 2009.
    • (2009) BMVC
    • Taigman, Y.1    Wolf, L.2    Hassner, T.3
  • 3
    • 84898027861 scopus 로고    scopus 로고
    • "Hello! My name is⋯ buffy" - Automatic naming of characters in TV video
    • M. Everingham, J. Sivic, and A. Zisserman. "Hello! My name is⋯ Buffy" - automatic naming of characters in TV video. In BMVC, 2006.
    • (2006) BMVC
    • Everingham, M.1    Sivic, J.2    Zisserman, A.3
  • 5
    • 0041438410 scopus 로고    scopus 로고
    • Bayesian tangent shape model: Estimating shape and pose parameters via Bayesian inference
    • Y. Zhou, L. Gu, and H.-J. Zhang. Bayesian tangent shape model: Estimating shape and pose parameters via Bayesian inference. In CVPR, 2003.
    • (2003) CVPR
    • Zhou, Y.1    Gu, L.2    Zhang, H.-J.3
  • 6
    • 70349192324 scopus 로고    scopus 로고
    • Data driven image models through continuous joint alignment
    • E. Learned-Miller. Data driven image models through continuous joint alignment. PAMI, 2005.
    • (2005) PAMI
    • Learned-Miller, E.1
  • 7
    • 0033712893 scopus 로고    scopus 로고
    • Learning from one example through shared densities on transforms
    • E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities on transforms. In CVPR, 2000.
    • (2000) CVPR
    • Miller, E.1    Matsakis, N.2    Viola, P.3
  • 9
    • 34047231306 scopus 로고    scopus 로고
    • Many heads are better than one: Jointly removing bias from multiple MRIs using nonparametric maximum likelihood
    • E. Learned-Miller and V. Jain. Many heads are better than one: Jointly removing bias from multiple MRIs using nonparametric maximum likelihood. In Proceedings of Information Processing in Medical Imaging, pages 615-626, 2005.
    • (2005) Proceedings of Information Processing in Medical Imaging , pp. 615-626
    • Learned-Miller, E.1    Jain, V.2
  • 10
    • 50649108337 scopus 로고    scopus 로고
    • Unsupervised joint alignment of complex images
    • G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV, 2007.
    • (2007) ICCV
    • Huang, G.B.1    Jain, V.2    Learned-Miller, E.3
  • 11
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 14
    • 70049094447 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • M. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. In NIPS, 2007.
    • (2007) NIPS
    • Ranzato, M.1    Boureau, Y.-L.2    LeCun, Y.3
  • 15
    • 51949099101 scopus 로고    scopus 로고
    • Least squares congealing for unsupervised alignment of images
    • M. Cox, S. Lucey, S. Sridharan, and J. Cohn. Least squares congealing for unsupervised alignment of images. In CVPR, 2008.
    • (2008) CVPR
    • Cox, M.1    Lucey, S.2    Sridharan, S.3    Cohn, J.4
  • 16
    • 77953193915 scopus 로고    scopus 로고
    • Least squares congealing for large numbers of images
    • M. Cox, S. Sridharan, S. Lucey, and J. Cohn. Least squares congealing for large numbers of images. In ICCV, 2009.
    • (2009) ICCV
    • Cox, M.1    Sridharan, S.2    Lucey, S.3    Cohn, J.4
  • 17
    • 77953210664 scopus 로고    scopus 로고
    • Simultaneous alignment and clustering for an image ensemble
    • X. Liu, Y. Tong, and F. W. Wheeler. Simultaneous alignment and clustering for an image ensemble. In ICCV, 2009.
    • (2009) ICCV
    • Liu, X.1    Tong, Y.2    Wheeler, F.W.3
  • 18
    • 84886007762 scopus 로고    scopus 로고
    • Unsupervised joint alignment and clustering using Bayesian nonparametrics
    • M. A. Mattar, A. R. Hanson, and E. G. Learned-Miller. Unsupervised joint alignment and clustering using Bayesian nonparametrics. In UAI, 2012.
    • (2012) UAI
    • Mattar, M.A.1    Hanson, A.R.2    Learned-Miller, E.G.3
  • 19
    • 77953193663 scopus 로고    scopus 로고
    • Unsupervised face alignment by nonrigid mapping
    • J. Zhu, L. V. Gool, and S. C. Hoi. Unsupervised face alignment by nonrigid mapping. In ICCV, 2009.
    • (2009) ICCV
    • Zhu, J.1    Gool, L.V.2    Hoi, S.C.3
  • 20
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 21
  • 23
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 24
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, pages 1794-1801, 2009.
    • (2009) CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 25
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 26
    • 84866691616 scopus 로고    scopus 로고
    • Learning hierarchical representations for face verification with convolutional deep belief networks
    • G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical representations for face verification with convolutional deep belief networks. In CVPR, 2012.
    • (2012) CVPR
    • Huang, G.B.1    Lee, H.2    Learned-Miller, E.3
  • 27
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • H. Lee, Y. Largman, P. Pham, and A. Y. Ng. Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS, 2009.
    • (2009) NIPS
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.Y.4
  • 28
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 30
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 32
  • 33
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic independent component analysis. Neural Computation, 13(7):1527-1558, 2001.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1527-1558
    • Hyvärinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 34
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In CVPR, 2009.
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    LeCun, Y.4
  • 35
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
    • M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. In CVPR, pages 2735-2742, 2009.
    • (2009) CVPR , pp. 2735-2742
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 37
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 38
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area V2. In NIPS, 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 39
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • A. H. III
    • K. Sohn, D. Y. Jung, H. Lee, and A. H. III. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011.
    • (2011) ICCV
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3
  • 40
    • 79958716412 scopus 로고    scopus 로고
    • Cosine similarity metric learning for face verification
    • H. V. Nguyen and L. Bai. Cosine similarity metric learning for face verification. In ACCV, 2010.
    • (2010) ACCV
    • Nguyen, H.V.1    Bai, L.2
  • 41
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on feature distributions
    • T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 19(3):51-59, 1996.
    • (1996) Pattern Recognition , vol.19 , Issue.3 , pp. 51-59
    • Ojala, T.1    Pietikinen, M.2    Harwood, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.