메뉴 건너뛰기




Volumn 9912 LNCS, Issue , 2016, Pages 262-277

Learning temporal transformations from time-lapse videos

Author keywords

Generation; Temporal prediction; Time lapse video

Indexed keywords

COMPUTER SCIENCE; COMPUTERS;

EID: 84990036917     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46484-8_16     Document Type: Conference Paper
Times cited : (102)

References (34)
  • 1
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using LSTMs
    • Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhudinov, R.3
  • 2
    • 84990069177 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. CoRR (2015)
    • (2015) Corr
    • Mathieu, M.1    Couprie, C.2    Lecun, Y.3
  • 3
    • 84962897886 scopus 로고    scopus 로고
    • Video (Language) modeling: A baseline for generative models of natural videos
    • Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. CoRR (2014)
    • (2014) Corr
    • Ranzato, M.1    Szlam, A.2    Bruna, J.3    Mathieu, M.4    Collobert, R.5    Chopra, S.6
  • 6
    • 84866637964 scopus 로고    scopus 로고
    • Sun attribute database: Discovering, annotating, and recognizing scene attributes
    • Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: CVPR (2012)
    • (2012) CVPR
    • Patterson, G.1    Hays, J.2
  • 7
    • 84959192212 scopus 로고    scopus 로고
    • Discovering states and transformations in image collections
    • Isola, P., Lim, J.J., Adelson, E.H.: Discovering states and transformations in image collections. In: CVPR (2015)
    • (2015) CVPR
    • Isola, P.1    Lim, J.J.2    Adelson, E.H.3
  • 8
    • 84887839353 scopus 로고    scopus 로고
    • Data-driven hallucination of different times of day from a single outdoor photo
    • Shih, Y., Paris, S., Durand, F., Freeman, W.T.: Data-driven hallucination of different times of day from a single outdoor photo. ACM Trans. Graph. 32(6), 200:1-200:11 (2013)
    • (2013) ACM Trans. Graph , vol.32 , Issue.6
    • Shih, Y.1    Paris, S.2    Durand, F.3    Freeman, W.T.4
  • 10
    • 84973923057 scopus 로고    scopus 로고
    • 3D time-lapse reconstruction from internet photos
    • Martin-Brualla, R., Gallup, D., Seitz, S.M.: 3D time-lapse reconstruction from internet photos. In: ICCV (2015)
    • (2015) ICCV
    • Martin-Brualla, R.1    Gallup, D.2    Seitz, S.M.3
  • 11
    • 84911380009 scopus 로고    scopus 로고
    • Patch to the future: Unsupervised visual prediction
    • Walker, J., Gupta, A., Hebert, M.: Patch to the future: unsupervised visual prediction. In: CVPR (2014)
    • (2014) CVPR
    • Walker, J.1    Gupta, A.2    Hebert, M.3
  • 12
    • 84867863926 scopus 로고    scopus 로고
    • Activity forecasting
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201-214. Springer, Heidelberg (2012). doi:10.1007/ 978-3-642-33765-9_15
    • (2012) ECCV 2012. LNCS , vol.7575 , pp. 201-214
    • Kitani, K.M.1    Ziebart, B.D.2    Bagnell, J.A.3    Hebert, M.4
  • 13
    • 78149325735 scopus 로고    scopus 로고
    • A data-driven approach for event prediction
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Yuen, J., Torralba, A.: A data-driven approach for event prediction. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 707-720. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_51
    • (2010) ECCV 2010. LNCS , vol.6312 , pp. 707-720
    • Yuen, J.1    Torralba, A.2
  • 14
    • 84973882750 scopus 로고    scopus 로고
    • Temporal perception and prediction in ego-centric video
    • Zhou, Y., Berg, T.L.: Temporal perception and prediction in ego-centric video. In: ICCV (2015)
    • (2015) ICCV
    • Zhou, Y.1    Berg, T.L.2
  • 15
    • 84990055538 scopus 로고    scopus 로고
    • Anticipating the future by watching unlabeled video
    • Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by watching unlabeled video. CoRR (2015)
    • (2015) Corr
    • Vondrick, C.1    Pirsiavash, H.2    Torralba, A.3
  • 18
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006)
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 20
    • 84898947294 scopus 로고    scopus 로고
    • Learning stochastic feedforward neural networks
    • Tang, Y., Salakhutdinov, R.R.: Learning stochastic feedforward neural networks. In: NIPS (2013)
    • (2013) NIPS
    • Tang, Y.1    Salakhutdinov, R.R.2
  • 22
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. In: CVPR (2015)
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 26
    • 84990048986 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR (2015)
    • (2015) Corr
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 28
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 30
  • 31
  • 32
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR (2014)
    • (2014) Corr
    • Kingma, D.P.1    Ba, J.2
  • 33
    • 84990050410 scopus 로고    scopus 로고
    • http://tensorflow.org (2015)
    • (2015)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.