메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 293-301

End-to-end instance segmentation with recurrent attention

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; PATTERN RECOGNITION; RECURRENT NEURAL NETWORKS; SEMANTICS;

EID: 85044274041     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.39     Document Type: Conference Paper
Times cited : (297)

References (45)
  • 2
    • 85041908030 scopus 로고    scopus 로고
    • Deep watershed transform for instance segmentation
    • abs/1611.08303
    • M. Bai and R. Urtasun. Deep watershed transform for instance segmentation. CoRR, abs/1611.08303, 2016.
    • (2016) CoRR
    • Bai, M.1    Urtasun, R.2
  • 3
    • 84959216973 scopus 로고    scopus 로고
    • Second-order constrained parametric proposals and sequential search-based structured prediction for semantic segmentation in rgb-d images
    • D. Banica and C. Sminchisescu. Second-order constrained parametric proposals and sequential search-based structured prediction for semantic segmentation in RGB-D images. In CVPR, 2015.
    • (2015) CVPR
    • Banica, D.1    Sminchisescu, C.2
  • 4
    • 84965179228 scopus 로고    scopus 로고
    • Scheduled sampling for sequence prediction with recurrent neural networks
    • S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. In NIPS, 2015.
    • (2015) NIPS
    • Bengio, S.1    Vinyals, O.2    Jaitly, N.3    Shazeer, N.4
  • 5
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In ECCV, 2002.
    • (2002) ECCV
    • Borenstein, E.1    Ullman, S.2
  • 6
    • 84929223025 scopus 로고    scopus 로고
    • Freeform region description with second-order pooling
    • J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Freeform region description with second-order pooling. TPAMI, 37(6): 1177-1189, 2015.
    • (2015) TPAMI , vol.37 , Issue.6 , pp. 1177-1189
    • Carreira, J.1    Caseiro, R.2    Batista, J.3    Sminchisescu, C.4
  • 9
    • 85041931014 scopus 로고    scopus 로고
    • Instance-sensitive fully convolutional networks
    • J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
    • (2016) ECCV
    • Dai, J.1    He, K.2    Li, Y.3    Ren, S.4    Sun, J.5
  • 10
    • 85044287331 scopus 로고    scopus 로고
    • Instance-aware semantic segmentation via multi-task network cascades
    • abs/1512.04412
    • J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. CoRR, abs/1512.04412, 2015.
    • (2015) CoRR
    • Dai, J.1    He, K.2    Sun, J.3
  • 11
    • 84897111386 scopus 로고    scopus 로고
    • The shape boltzmann machine: A strong model of object shape
    • S. M. A. Eslami, N. Heess, C. K. I. Williams, and J. M. Winn. The shape boltzmann machine: A strong model of object shape. IJCV, 107(2): 155-176, 2014.
    • (2014) IJCV , vol.107 , Issue.2 , pp. 155-176
    • Eslami, S.M.A.1    Heess, N.2    Williams, C.K.I.3    Winn, J.M.4
  • 12
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? The kitti vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR, 2012.
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 13
    • 85028048141 scopus 로고    scopus 로고
    • Laplacian pyramid reconstruction and refinement for semantic segmentation
    • G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruction and refinement for semantic segmentation. In ECCV, 2016.
    • (2016) ECCV
    • Ghiasi, G.1    Fowlkes, C.C.2
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.A.2    Girshick, R.B.3    Malik, J.4
  • 19
    • 85041926027 scopus 로고    scopus 로고
    • Shape-aware instance segmentation
    • abs/1612.03129
    • Z. Hayder, X. He, and M. Salzmann. Shape-aware instance segmentation. CoRR, abs/1612.03129, 2016.
    • (2016) CoRR
    • Hayder, Z.1    He, X.2    Salzmann, M.3
  • 20
    • 67349244372 scopus 로고    scopus 로고
    • Search-based structured prediction
    • H. D. III, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learning, 75(3): 297-325, 2009.
    • (2009) Machine Learning , vol.75 , Issue.3 , pp. 297-325
    • Langford, J.1    Marcu, D.2
  • 22
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • V. S. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
    • (2010) NIPS
    • Lempitsky, V.S.1    Zisserman, A.2
  • 23
    • 84986322564 scopus 로고    scopus 로고
    • Iterative instance segmentation
    • K. Li, B. Hariharan, and J. Malik. Iterative instance segmentation. In CVPR, 2016.
    • (2016) CVPR
    • Li, K.1    Hariharan, B.2    Malik, J.3
  • 25
    • 85018184309 scopus 로고    scopus 로고
    • Proposal-free network for instance-level object segmentation
    • abs/1509.02636
    • X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan. Proposal-free network for instance-level object segmentation. CoRR, abs/1509.02636, 2015.
    • (2015) CoRR
    • Liang, X.1    Wei, Y.2    Shen, X.3    Yang, J.4    Lin, L.5    Yan, S.6
  • 26
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 28
    • 84899873818 scopus 로고    scopus 로고
    • Conditional random field with high-order dependencies for sequence labeling and segmentation
    • V. C. Nguyen, N. Ye,W. S. Lee, and H. L. Chieu. Conditional random field with high-order dependencies for sequence labeling and segmentation. JMLR, 15(1): 981-1009, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 981-1009
    • Nguyen, V.C.1    Ye, N.2    Lee, W.S.3    Chieu, H.L.4
  • 29
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 30
    • 85044316471 scopus 로고    scopus 로고
    • 3-d histogram-based segmentation and leaf detection for rosette plants
    • J. Pape and C. Klukas. 3-d histogram-based segmentation and leaf detection for rosette plants. In ECCV Workshops, 2014.
    • (2014) ECCV Workshops
    • Pape, J.1    Klukas, C.2
  • 31
    • 85038425291 scopus 로고    scopus 로고
    • Learning to decompose for object detection and instance segmentation
    • E. Park and A. C. Berg. Learning to decompose for object detection and instance segmentation. In ICLR Workshop, 2016.
    • (2016) ICLR Workshop
    • Park, E.1    Berg, A.C.2
  • 34
    • 84965170394 scopus 로고    scopus 로고
    • Exploring models and data for image question answering
    • M. Ren, R. Kiros, and R. S. Zemel. Exploring models and data for image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.S.3
  • 35
    • 85030264885 scopus 로고    scopus 로고
    • Recurrent instance segmentation
    • abs/1511.08250
    • B. Romera-Paredes and P. H. S. Torr. Recurrent instance segmentation. CoRR, abs/1511.08250, 2015.
    • (2015) CoRR
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 37
    • 84965121965 scopus 로고    scopus 로고
    • Convolutional lstm network: A machine learning approach for precipitation nowcasting
    • X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In NIPS, 2015.
    • (2015) NIPS
    • Shi, X.1    Chen, Z.2    Wang, H.3    Yeung, D.4    Wong, W.5    Woo, W.6
  • 38
    • 84959205514 scopus 로고    scopus 로고
    • Instance segmentation of indoor scenes using a coverage loss
    • N. Silberman, D. Sontag, and R. Fergus. Instance segmentation of indoor scenes using a coverage loss. In ECCV, 2014.
    • (2014) ECCV
    • Silberman, N.1    Sontag, D.2    Fergus, R.3
  • 39
    • 84986247189 scopus 로고    scopus 로고
    • End-to-end people detection in crowded scenes
    • abs/1506.04878
    • R. Stewart and M. Andriluka. End-to-end people detection in crowded scenes. CoRR, abs/1506.04878, 2016.
    • (2016) CoRR
    • Stewart, R.1    Andriluka, M.2
  • 40
    • 85020190110 scopus 로고    scopus 로고
    • Pixel-level encoding and depth layering for instance-level semantic labeling
    • J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level encoding and depth layering for instance-level semantic labeling. In GCPR, 2016.
    • (2016) GCPR
    • Uhrig, J.1    Cordts, M.2    Franke, U.3    Brox, T.4
  • 42
    • 84865582931 scopus 로고    scopus 로고
    • Layered object models for image segmentation
    • Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Layered object models for image segmentation. TPAMI, 34(9): 1731-1743, 2012.
    • (2012) TPAMI , vol.34 , Issue.9 , pp. 1731-1743
    • Yang, Y.1    Hallman, S.2    Ramanan, D.3    Fowlkes, C.C.4
  • 43
    • 84949929177 scopus 로고    scopus 로고
    • Multi-leaf tracking from fluorescence plant videos
    • X. Yin, X. Liu, J. Chen, and D. M. Kramer. Multi-leaf tracking from fluorescence plant videos. In ICIP, 2014.
    • (2014) ICIP
    • Yin, X.1    Liu, X.2    Chen, J.3    Kramer, D.M.4
  • 44
    • 85060481824 scopus 로고    scopus 로고
    • Instance-level segmentation with deep densely connected mrfs
    • Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmentation with deep densely connected MRFs. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, Z.1    Fidler, S.2    Urtasun, R.3
  • 45
    • 84973891613 scopus 로고    scopus 로고
    • Monocular object instance segmentation and depth ordering with cnns
    • Z. Zhang, A. G. Schwing, S. Fidler, and R. Urtasun. Monocular object instance segmentation and depth ordering with CNNs. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Schwing, A.G.2    Fidler, S.3    Urtasun, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.