-
1
-
-
84973890960
-
Vqa: Visual question answering
-
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual question answering. In ICCV, 2015.
-
(2015)
ICCV
-
-
Antol, S.1
Agrawal, A.2
Lu, J.3
Mitchell, M.4
Batra, D.5
Zitnick, C.L.6
Parikh, D.7
-
2
-
-
85041908030
-
Deep watershed transform for instance segmentation
-
abs/1611.08303
-
M. Bai and R. Urtasun. Deep watershed transform for instance segmentation. CoRR, abs/1611.08303, 2016.
-
(2016)
CoRR
-
-
Bai, M.1
Urtasun, R.2
-
3
-
-
84959216973
-
Second-order constrained parametric proposals and sequential search-based structured prediction for semantic segmentation in rgb-d images
-
D. Banica and C. Sminchisescu. Second-order constrained parametric proposals and sequential search-based structured prediction for semantic segmentation in RGB-D images. In CVPR, 2015.
-
(2015)
CVPR
-
-
Banica, D.1
Sminchisescu, C.2
-
4
-
-
84965179228
-
Scheduled sampling for sequence prediction with recurrent neural networks
-
S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Bengio, S.1
Vinyals, O.2
Jaitly, N.3
Shazeer, N.4
-
5
-
-
0042004575
-
Class-specific, top-down segmentation
-
E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In ECCV, 2002.
-
(2002)
ECCV
-
-
Borenstein, E.1
Ullman, S.2
-
6
-
-
84929223025
-
Freeform region description with second-order pooling
-
J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Freeform region description with second-order pooling. TPAMI, 37(6): 1177-1189, 2015.
-
(2015)
TPAMI
, vol.37
, Issue.6
, pp. 1177-1189
-
-
Carreira, J.1
Caseiro, R.2
Batista, J.3
Sminchisescu, C.4
-
7
-
-
85029078673
-
Counting everyday objects in everyday scenes
-
abs/1604.03505
-
P. Chattopadhyay, R. Vedantam, R. S. Ramprasaath, D. Batra, and D. Parikh. Counting everyday objects in everyday scenes. CoRR, abs/1604.03505, 2016.
-
(2016)
CoRR
-
-
Chattopadhyay, P.1
Vedantam, R.2
Ramprasaath, R.S.3
Batra, D.4
Parikh, D.5
-
8
-
-
85021071253
-
The cityscapes dataset for semantic urban scene understanding
-
abs/1604.01685
-
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. CoRR, abs/1604.01685, 2016.
-
(2016)
CoRR
-
-
Cordts, M.1
Omran, M.2
Ramos, S.3
Rehfeld, T.4
Enzweiler, M.5
Benenson, R.6
Franke, U.7
Roth, S.8
Schiele, B.9
-
9
-
-
85041931014
-
Instance-sensitive fully convolutional networks
-
J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Dai, J.1
He, K.2
Li, Y.3
Ren, S.4
Sun, J.5
-
10
-
-
85044287331
-
Instance-aware semantic segmentation via multi-task network cascades
-
abs/1512.04412
-
J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. CoRR, abs/1512.04412, 2015.
-
(2015)
CoRR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
11
-
-
84897111386
-
The shape boltzmann machine: A strong model of object shape
-
S. M. A. Eslami, N. Heess, C. K. I. Williams, and J. M. Winn. The shape boltzmann machine: A strong model of object shape. IJCV, 107(2): 155-176, 2014.
-
(2014)
IJCV
, vol.107
, Issue.2
, pp. 155-176
-
-
Eslami, S.M.A.1
Heess, N.2
Williams, C.K.I.3
Winn, J.M.4
-
12
-
-
84866704163
-
Are we ready for autonomous driving? The kitti vision benchmark suite
-
A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR, 2012.
-
(2012)
CVPR
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
13
-
-
85028048141
-
Laplacian pyramid reconstruction and refinement for semantic segmentation
-
G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruction and refinement for semantic segmentation. In ECCV, 2016.
-
(2016)
ECCV
-
-
Ghiasi, G.1
Fowlkes, C.C.2
-
14
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
16
-
-
84983208884
-
Draw: A recurrent neural network for image generation
-
K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. DRAW: A recurrent neural network for image generation. In ICML, 2015.
-
(2015)
ICML
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.J.4
Wierstra, D.5
-
18
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.A.2
Girshick, R.B.3
Malik, J.4
-
19
-
-
85041926027
-
Shape-aware instance segmentation
-
abs/1612.03129
-
Z. Hayder, X. He, and M. Salzmann. Shape-aware instance segmentation. CoRR, abs/1612.03129, 2016.
-
(2016)
CoRR
-
-
Hayder, Z.1
He, X.2
Salzmann, M.3
-
20
-
-
67349244372
-
Search-based structured prediction
-
H. D. III, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learning, 75(3): 297-325, 2009.
-
(2009)
Machine Learning
, vol.75
, Issue.3
, pp. 297-325
-
-
Langford, J.1
Marcu, D.2
-
21
-
-
85041920403
-
Instancecut: From edges to instances with multicut
-
abs/1611.08272
-
A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother. InstanceCut: from edges to instances with multicut. CoRR, abs/1611.08272.
-
CoRR
-
-
Kirillov, A.1
Levinkov, E.2
Andres, B.3
Savchynskyy, B.4
Rother, C.5
-
22
-
-
85162384490
-
Learning to count objects in images
-
V. S. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
-
(2010)
NIPS
-
-
Lempitsky, V.S.1
Zisserman, A.2
-
24
-
-
84986268711
-
Reversible recursive instance-level object segmentation
-
X. Liang, Y. Wei, X. Shen, Z. Jie, J. Feng, L. Lin, and S. Yan. Reversible recursive instance-level object segmentation. In CVPR, 2016.
-
(2016)
CVPR
-
-
Liang, X.1
Wei, Y.2
Shen, X.3
Jie, Z.4
Feng, J.5
Lin, L.6
Yan, S.7
-
25
-
-
85018184309
-
Proposal-free network for instance-level object segmentation
-
abs/1509.02636
-
X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan. Proposal-free network for instance-level object segmentation. CoRR, abs/1509.02636, 2015.
-
(2015)
CoRR
-
-
Liang, X.1
Wei, Y.2
Shen, X.3
Yang, J.4
Lin, L.5
Yan, S.6
-
26
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
28
-
-
84899873818
-
Conditional random field with high-order dependencies for sequence labeling and segmentation
-
V. C. Nguyen, N. Ye,W. S. Lee, and H. L. Chieu. Conditional random field with high-order dependencies for sequence labeling and segmentation. JMLR, 15(1): 981-1009, 2014.
-
(2014)
JMLR
, vol.15
, Issue.1
, pp. 981-1009
-
-
Nguyen, V.C.1
Ye, N.2
Lee, W.S.3
Chieu, H.L.4
-
29
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
30
-
-
85044316471
-
3-d histogram-based segmentation and leaf detection for rosette plants
-
J. Pape and C. Klukas. 3-d histogram-based segmentation and leaf detection for rosette plants. In ECCV Workshops, 2014.
-
(2014)
ECCV Workshops
-
-
Pape, J.1
Klukas, C.2
-
31
-
-
85038425291
-
Learning to decompose for object detection and instance segmentation
-
E. Park and A. C. Berg. Learning to decompose for object detection and instance segmentation. In ICLR Workshop, 2016.
-
(2016)
ICLR Workshop
-
-
Park, E.1
Berg, A.C.2
-
33
-
-
84990036909
-
Learning to refine object segments
-
P. O. Pinheiro, T. Lin, R. Collobert, and P. Dollár. Learning to refine object segments. In ECCV, pages 75-91, 2016.
-
(2016)
ECCV
, pp. 75-91
-
-
Pinheiro, P.O.1
Lin, T.2
Collobert, R.3
Dollár, P.4
-
34
-
-
84965170394
-
Exploring models and data for image question answering
-
M. Ren, R. Kiros, and R. S. Zemel. Exploring models and data for image question answering. In NIPS, 2015.
-
(2015)
NIPS
-
-
Ren, M.1
Kiros, R.2
Zemel, R.S.3
-
35
-
-
85030264885
-
Recurrent instance segmentation
-
abs/1511.08250
-
B. Romera-Paredes and P. H. S. Torr. Recurrent instance segmentation. CoRR, abs/1511.08250, 2015.
-
(2015)
CoRR
-
-
Romera-Paredes, B.1
Torr, P.H.S.2
-
36
-
-
84949637673
-
Leaf segmentation in plant phenotyping: A collation study
-
H. Scharr, M. Minervini, A. P. French, C. Klukas, D. M. Kramer, X. Liu, I. Luengo, J. Pape, G. Polder, D. Vukadinovic, X. Yin, and S. A. Tsaftaris. Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl., 27(4): 585-606, 2016.
-
(2016)
Mach. Vis. Appl
, vol.27
, Issue.4
, pp. 585-606
-
-
Scharr, H.1
Minervini, M.2
French, A.P.3
Klukas, C.4
Kramer, D.M.5
Liu, X.6
Luengo, I.7
Pape, J.8
Polder, G.9
Vukadinovic, D.10
Yin, X.11
Tsaftaris, S.A.12
-
37
-
-
84965121965
-
Convolutional lstm network: A machine learning approach for precipitation nowcasting
-
X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In NIPS, 2015.
-
(2015)
NIPS
-
-
Shi, X.1
Chen, Z.2
Wang, H.3
Yeung, D.4
Wong, W.5
Woo, W.6
-
38
-
-
84959205514
-
Instance segmentation of indoor scenes using a coverage loss
-
N. Silberman, D. Sontag, and R. Fergus. Instance segmentation of indoor scenes using a coverage loss. In ECCV, 2014.
-
(2014)
ECCV
-
-
Silberman, N.1
Sontag, D.2
Fergus, R.3
-
39
-
-
84986247189
-
End-to-end people detection in crowded scenes
-
abs/1506.04878
-
R. Stewart and M. Andriluka. End-to-end people detection in crowded scenes. CoRR, abs/1506.04878, 2016.
-
(2016)
CoRR
-
-
Stewart, R.1
Andriluka, M.2
-
40
-
-
85020190110
-
Pixel-level encoding and depth layering for instance-level semantic labeling
-
J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level encoding and depth layering for instance-level semantic labeling. In GCPR, 2016.
-
(2016)
GCPR
-
-
Uhrig, J.1
Cordts, M.2
Franke, U.3
Brox, T.4
-
41
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015.
-
(2015)
ICML
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.C.5
Salakhutdinov, R.6
Zemel, R.S.7
Bengio, Y.8
-
42
-
-
84865582931
-
Layered object models for image segmentation
-
Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Layered object models for image segmentation. TPAMI, 34(9): 1731-1743, 2012.
-
(2012)
TPAMI
, vol.34
, Issue.9
, pp. 1731-1743
-
-
Yang, Y.1
Hallman, S.2
Ramanan, D.3
Fowlkes, C.C.4
-
43
-
-
84949929177
-
Multi-leaf tracking from fluorescence plant videos
-
X. Yin, X. Liu, J. Chen, and D. M. Kramer. Multi-leaf tracking from fluorescence plant videos. In ICIP, 2014.
-
(2014)
ICIP
-
-
Yin, X.1
Liu, X.2
Chen, J.3
Kramer, D.M.4
-
44
-
-
85060481824
-
Instance-level segmentation with deep densely connected mrfs
-
Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmentation with deep densely connected MRFs. In CVPR, 2016.
-
(2016)
CVPR
-
-
Zhang, Z.1
Fidler, S.2
Urtasun, R.3
-
45
-
-
84973891613
-
Monocular object instance segmentation and depth ordering with cnns
-
Z. Zhang, A. G. Schwing, S. Fidler, and R. Urtasun. Monocular object instance segmentation and depth ordering with CNNs. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zhang, Z.1
Schwing, A.G.2
Fidler, S.3
Urtasun, R.4
|