-
1
-
-
14344257912
-
Gaussian process classification for segmenting and annotating sequences
-
Altun, Y., Hofmann, T., & Smola, A. (2004). Gaussian process classification for segmenting and annotating sequences. In Proceedings of the international conference on machine learning (ICML).
-
(2004)
Proceedings of the international conference on machine learning (ICML)
-
-
-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. Ando T. Zhang 2005 A framework for learning predictive structures from multiple tasks and unlabeled data Journal of Machine Learning Research 6 1817 1853
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.1
Zhang, T.2
-
3
-
-
29344436709
-
Policy search by dynamic programming
-
MIT Press Cambridge
-
Bagnell, J. A., Kakade, S., Ng, A., & Schneider, J. (2003). Policy search by dynamic programming. In Neural information processing systems (Vol. 16). Cambridge: MIT Press.
-
(2003)
Neural information processing systems
, vol.16
-
-
Bagnell, J.A.1
Kakade, S.2
Ng, A.3
Schneider, J.4
-
4
-
-
31844436676
-
Error limiting reductions between classification tasks
-
Beygelzimer, A., Dani, V., Hayes, T., Langford, J., & Zadrozny, B. (2005). Error limiting reductions between classification tasks. In Proceedings of the international conference on machine learning (ICML).
-
(2005)
Proceedings of the international conference on machine learning (ICML)
-
-
-
5
-
-
25844498898
-
Intricacies of collins' parsing model
-
DOI 10.1162/0891201042544929
-
D. M. Bikel 2004 Intricacies of Collins' parsing model Computational Linguistics 30 4 479 511 (Pubitemid 41399545)
-
(2004)
Computational Linguistics
, vol.30
, Issue.4
, pp. 479-511
-
-
Bikel, D.M.1
-
10
-
-
0031645683
-
On the complexity of protein folding
-
Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity of protein folding. In ACM symposium on theory of computing (STOC) (pp. 597-603).
-
(1998)
ACM symposium on theory of computing (STOC)
, pp. 597-603
-
-
-
14
-
-
67349236191
-
Bayesian summarization at DUC and a suggestion for extrinsic evaluation
-
Daumé III, H., & Marcu, D. (2005a). Bayesian summarization at DUC and a suggestion for extrinsic evaluation. In Document understanding conference.
-
(2005)
Document understanding conference
-
-
-
18
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Y. Freund R. E. Shapire 1999 Large margin classification using the perceptron algorithm Machine Learning 37 3 277 296
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Shapire, R.E.2
-
20
-
-
85035364491
-
SVMTool: A general POS tagger generator based on support vector machines
-
Giménez, J., & Màrquez, L. (2004). SVMTool: a general POS tagger generator based on support vector machines. In Proceedings of the 4th LREC.
-
(2004)
Proceedings of the 4th LREC
-
-
-
22
-
-
67349192762
-
Lower bounds for reductions
-
Kääriäinen, M. (2006). Lower bounds for reductions. In The atomic learning workshop (TTI-C), March 2006.
-
(2006)
The atomic learning workshop (TTI-C)
-
-
-
29
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the international conference on machine learning (ICML).
-
(2001)
Proceedings of the international conference on machine learning (ICML)
-
-
-
30
-
-
31844448029
-
Relating reinforcement learning performance to classification performance
-
Langford, J., & Zadrozny, B. (2005). Relating reinforcement learning performance to classification performance. In Proceedings of the international conference on machine learning (ICML).
-
(2005)
Proceedings of the international conference on machine learning (ICML)
-
-
-
35
-
-
67349153949
-
1
-
25 August 2006
-
1. Post on the NLPers Blog, 25 August 2006. http://nlpers.blogspot. com/2006/08/doing-named-entity-recognition-dont.html.
-
(2006)
Post on the NLPers Blog
-
-
Manning, C.1
-
37
-
-
67349132526
-
Maximum entropy Markov models for information extraction and segmentation
-
McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction and segmentation. In Proceedings of the international conference on machine learning (ICML).
-
(2000)
Proceedings of the international conference on machine learning (ICML)
-
-
-
39
-
-
33947305118
-
Identifying gene and protein mentions in text using conditional random fields
-
McDonald, R., & Pereira, F. (2005). Identifying gene and protein mentions in text using conditional random fields. BMC Bioinformatics, 6(Suppl 1).
-
(2005)
BMC Bioinformatics
, vol.6
, Issue.SUPPL 1
-
-
-
40
-
-
67349264679
-
Large margin online learning algorithms for scalable structured classification
-
McDonald, R., Crammer, K., & Pereira, F. (2004). Large margin online learning algorithms for scalable structured classification. In NIPS workshop on learning with structured outputs.
-
(2004)
NIPS workshop on learning with structured outputs
-
-
-
46
-
-
11144273669
-
The perceptron: a probabilistic model for information storage and organization in the brain
-
Reprinted in Neurocomputing (MIT Press, 1998)
-
F. Rosenblatt 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychological Review 65 386 408 Reprinted in Neurocomputing (MIT Press, 1998)
-
(1958)
Psychological Review
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
48
-
-
34047192804
-
Semi-Markov conditional random fields for information extraction
-
Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random fields for information extraction. In Advances in neural information processing systems (NIPS).
-
(2004)
Advances in neural information processing systems (NIPS)
-
-
-
50
-
-
14344253846
-
Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data
-
Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. In Proceedings of the international conference on machine learning (ICML) (pp. 783-790).
-
(2004)
Proceedings of the international conference on machine learning (ICML)
, pp. 783-790
-
-
-
51
-
-
78249247251
-
-
(Technical Report IR-402). University of Massachusetts, Center for Intelligent Information Retrieval
-
Sutton, C., Sindelar, M., & McCallum, A. (2005). Feature bagging: preventing weight undertraining in structured discriminative learning (Technical Report IR-402). University of Massachusetts, Center for Intelligent Information Retrieval.
-
(2005)
Feature bagging: preventing weight undertraining in structured discriminative learning
-
-
-
53
-
-
31844442382
-
Learning structured prediction models: A large margin approach
-
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C. (2005). Learning structured prediction models: a large margin approach. In Proceedings of the international conference on machine learning (ICML) (pp. 897-904). (Pubitemid 43183420)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 897-904
-
-
Taskar, B.1
Chatalbashev, V.2
Koller, D.3
Guestrin, C.4
-
61
-
-
67349162743
-
NUS at DUC 2005: understanding documents via concept links
-
Ye, S., Qiu, L., Chua, T.-S., & Kan, M.-Y. (2005). NUS at DUC 2005: understanding documents via concept links. In Document understanding conference.
-
(2005)
Document understanding conference
-
-
-
62
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-sensitive learning by cost-proportionate example weighting. In Proceedings of the IEEE conference on data mining (ICMD).
-
(2003)
Proceedings of the IEEE conference on data mining (ICMD)
-
-
|