메뉴 건너뛰기




Volumn 75, Issue 3, 2009, Pages 297-325

Search-based structured prediction

Author keywords

Reductions; Search; Structured prediction

Indexed keywords

BINARY CLASSIFIERS; COMPLEX PROBLEMS; COMPUTATIONAL BIOLOGY; FEATURE FUNCTION; LOSS FUNCTIONS; NATURAL LANGUAGES; PREDICTION FUNCTION; SEARCH; STRUCTURED LEARNING; STRUCTURED PREDICTION;

EID: 67349244372     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-009-5106-x     Document Type: Article
Times cited : (488)

References (63)
  • 1
    • 14344257912 scopus 로고    scopus 로고
    • Gaussian process classification for segmenting and annotating sequences
    • Altun, Y., Hofmann, T., & Smola, A. (2004). Gaussian process classification for segmenting and annotating sequences. In Proceedings of the international conference on machine learning (ICML).
    • (2004) Proceedings of the international conference on machine learning (ICML)
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Ando T. Zhang 2005 A framework for learning predictive structures from multiple tasks and unlabeled data Journal of Machine Learning Research 6 1817 1853
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 4
  • 5
    • 25844498898 scopus 로고    scopus 로고
    • Intricacies of collins' parsing model
    • DOI 10.1162/0891201042544929
    • D. M. Bikel 2004 Intricacies of Collins' parsing model Computational Linguistics 30 4 479 511 (Pubitemid 41399545)
    • (2004) Computational Linguistics , vol.30 , Issue.4 , pp. 479-511
    • Bikel, D.M.1
  • 10
    • 0031645683 scopus 로고    scopus 로고
    • On the complexity of protein folding
    • Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity of protein folding. In ACM symposium on theory of computing (STOC) (pp. 597-603).
    • (1998) ACM symposium on theory of computing (STOC) , pp. 597-603
  • 14
    • 67349236191 scopus 로고    scopus 로고
    • Bayesian summarization at DUC and a suggestion for extrinsic evaluation
    • Daumé III, H., & Marcu, D. (2005a). Bayesian summarization at DUC and a suggestion for extrinsic evaluation. In Document understanding conference.
    • (2005) Document understanding conference
  • 18
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund R. E. Shapire 1999 Large margin classification using the perceptron algorithm Machine Learning 37 3 277 296
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Shapire, R.E.2
  • 20
    • 85035364491 scopus 로고    scopus 로고
    • SVMTool: A general POS tagger generator based on support vector machines
    • Giménez, J., & Màrquez, L. (2004). SVMTool: a general POS tagger generator based on support vector machines. In Proceedings of the 4th LREC.
    • (2004) Proceedings of the 4th LREC
  • 22
    • 67349192762 scopus 로고    scopus 로고
    • Lower bounds for reductions
    • Kääriäinen, M. (2006). Lower bounds for reductions. In The atomic learning workshop (TTI-C), March 2006.
    • (2006) The atomic learning workshop (TTI-C)
  • 29
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the international conference on machine learning (ICML).
    • (2001) Proceedings of the international conference on machine learning (ICML)
  • 30
  • 35
    • 67349153949 scopus 로고    scopus 로고
    • 1
    • 25 August 2006
    • 1. Post on the NLPers Blog, 25 August 2006. http://nlpers.blogspot. com/2006/08/doing-named-entity-recognition-dont.html.
    • (2006) Post on the NLPers Blog
    • Manning, C.1
  • 37
    • 67349132526 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction and segmentation. In Proceedings of the international conference on machine learning (ICML).
    • (2000) Proceedings of the international conference on machine learning (ICML)
  • 39
    • 33947305118 scopus 로고    scopus 로고
    • Identifying gene and protein mentions in text using conditional random fields
    • McDonald, R., & Pereira, F. (2005). Identifying gene and protein mentions in text using conditional random fields. BMC Bioinformatics, 6(Suppl 1).
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL 1
  • 40
    • 67349264679 scopus 로고    scopus 로고
    • Large margin online learning algorithms for scalable structured classification
    • McDonald, R., Crammer, K., & Pereira, F. (2004). Large margin online learning algorithms for scalable structured classification. In NIPS workshop on learning with structured outputs.
    • (2004) NIPS workshop on learning with structured outputs
  • 46
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Reprinted in Neurocomputing (MIT Press, 1998)
    • F. Rosenblatt 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychological Review 65 386 408 Reprinted in Neurocomputing (MIT Press, 1998)
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 48
    • 34047192804 scopus 로고    scopus 로고
    • Semi-Markov conditional random fields for information extraction
    • Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random fields for information extraction. In Advances in neural information processing systems (NIPS).
    • (2004) Advances in neural information processing systems (NIPS)
  • 50
    • 14344253846 scopus 로고    scopus 로고
    • Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data
    • Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. In Proceedings of the international conference on machine learning (ICML) (pp. 783-790).
    • (2004) Proceedings of the international conference on machine learning (ICML) , pp. 783-790
  • 51
    • 78249247251 scopus 로고    scopus 로고
    • (Technical Report IR-402). University of Massachusetts, Center for Intelligent Information Retrieval
    • Sutton, C., Sindelar, M., & McCallum, A. (2005). Feature bagging: preventing weight undertraining in structured discriminative learning (Technical Report IR-402). University of Massachusetts, Center for Intelligent Information Retrieval.
    • (2005) Feature bagging: preventing weight undertraining in structured discriminative learning
  • 61
    • 67349162743 scopus 로고    scopus 로고
    • NUS at DUC 2005: understanding documents via concept links
    • Ye, S., Qiu, L., Chua, T.-S., & Kan, M.-Y. (2005). NUS at DUC 2005: understanding documents via concept links. In Document understanding conference.
    • (2005) Document understanding conference
  • 62
    • 33749245586 scopus 로고    scopus 로고
    • Cost-sensitive learning by cost-proportionate example weighting
    • Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-sensitive learning by cost-proportionate example weighting. In Proceedings of the IEEE conference on data mining (ICMD).
    • (2003) Proceedings of the IEEE conference on data mining (ICMD)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.