-
1
-
-
84962229210
-
Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells
-
Grover A, Sanjuan-Pla A, Thongjuea S, et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun 2016;7:11075.
-
(2016)
Nat Commun
, vol.7
, pp. 11075
-
-
Grover, A.1
Sanjuan-Pla, A.2
Thongjuea, S.3
-
2
-
-
85019709160
-
Proliferation drives aging-related functional decline in a subpopulation of the hem-atopoietic stem cell compartment
-
Kirschner K, Chandra T, Kiselev V, et al. Proliferation drives aging-related functional decline in a subpopulation of the hem-atopoietic stem cell compartment. Cell Rep 2017;19(8):1503-11.
-
(2017)
Cell Rep
, vol.19
, Issue.8
, pp. 1503-1511
-
-
Kirschner, K.1
Chandra, T.2
Kiselev, V.3
-
3
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen AA, Nowakowski TJ, Shuga J, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotech 2014;32(10):1053-8.
-
(2014)
Nat Biotech
, vol.32
, Issue.10
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
-
4
-
-
85016148799
-
Single-cell spatial reconstruction reveals global division of labour in the mammalian liver
-
Halpern KB, Shenhav R, Matcovitch-Natan O, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017;542(7641):352-6.
-
(2017)
Nature
, vol.542
, Issue.7641
, pp. 352-356
-
-
Halpern, K.B.1
Shenhav, R.2
Matcovitch-Natan, O.3
-
5
-
-
84891677425
-
Full-length RNA-seq from single cells using Smart-seq2
-
Picelli S, Faridani OR, Björklund ÅK, et al. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014;9(1):171-81.
-
(2014)
Nat Protoc
, vol.9
, Issue.1
, pp. 171-181
-
-
Picelli, S.1
Faridani, O.R.2
Björklund, A.K.3
-
6
-
-
85028303209
-
Comprehensive single-cell transcriptional profiling of a multicellular organism
-
Cao J, Packer JS, Ramani V, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017;357(6352):661-7.
-
(2017)
Science
, vol.357
, Issue.6352
, pp. 661-667
-
-
Cao, J.1
Packer, J.S.2
Ramani, V.3
-
7
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187-201.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
-
8
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015;161(5):1202-14.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
-
9
-
-
85019374719
-
Cell fixation and preservation for droplet-based single-cell transcriptomics
-
Alles J, Karaiskos N, Praktiknjo SD, et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 2017;15(1):44.
-
(2017)
BMC Biol
, vol.15
, Issue.1
, pp. 44
-
-
Alles, J.1
Karaiskos, N.2
Praktiknjo, S.D.3
-
10
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017;356(6335).
-
(2017)
Science
, vol.356
, Issue.6335
-
-
Villani, A.C.1
Satija, R.2
Reynolds, G.3
-
11
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 2016; 17(1):63.
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 63
-
-
Bacher, R.1
Kendziorski, C.2
-
12
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015;16(3):133-45.
-
(2015)
Nat Rev Genet
, vol.16
, Issue.3
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
13
-
-
85055666799
-
Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data
-
Lun ATL, Calero-Nieto FJ, Haim-Vilmovsky L, et al. Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data. bioRxiv 2017.
-
(2017)
bioRxiv
-
-
Lun, A.T.L.1
Calero-Nieto, F.J.2
Haim-Vilmovsky, L.3
-
14
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 2014;11(2):163-6.
-
(2014)
Nat Methods
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
-
15
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung PY, Blischak JD, Hsiao CJ, et al. Batch effects and the effective design of single-cell gene expression studies. Sci Rep 2017;7:39921.
-
(2017)
Sci Rep
, vol.7
, pp. 39921
-
-
Tung, P.Y.1
Blischak, J.D.2
Hsiao, C.J.3
-
16
-
-
77955504378
-
Statistical design and analysis of RNA-seq data
-
Auer PL, Doerge RW. Statistical design and analysis of RNA-seq data. Genetics 2010;185(2):405-16.
-
(2010)
Genetics
, vol.185
, Issue.2
, pp. 405-416
-
-
Auer, P.L.1
Doerge, R.W.2
-
17
-
-
0036900895
-
Fundamentals of experimental design for cDNA microarrays
-
Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat Genet 2002;32:490-5.
-
(2002)
Nat Genet
, vol.32
, pp. 490-495
-
-
Churchill, G.A.1
-
18
-
-
0000884487
-
Experimental design for gene expression microarrays
-
Kerr MK, Churchill GA. Experimental design for gene expression microarrays. Biostatistics 2001;2(2):183-201.
-
(2001)
Biostatistics
, vol.2
, Issue.2
, pp. 183-201
-
-
Kerr, M.K.1
Churchill, G.A.2
-
19
-
-
84961169621
-
On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
-
Hicks SC, Teng M, Irizarry RA. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv 2015.
-
(2015)
bioRxiv
-
-
Hicks, S.C.1
Teng, M.2
Irizarry, R.A.3
-
20
-
-
0034730124
-
Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations
-
Lee ML, Kuo FC, Whitmore GA, et al. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 2000;97(18):9834-9.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.18
, pp. 9834-9839
-
-
Lee, M.L.1
Kuo, F.C.2
Whitmore, G.A.3
-
21
-
-
77956873627
-
Tackling the widespread and critical impact of batch effects in high-throughput data
-
Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010;11(10):733-9.
-
(2010)
Nat Rev Genet
, vol.11
, Issue.10
, pp. 733-739
-
-
Leek, J.T.1
Scharpf, R.B.2
Bravo, H.C.3
-
22
-
-
2542565666
-
Gene expression in the urinary bladder: A common carcinoma in situ gene expression signature exists disregarding histopathological classification
-
Dyrskjøt L, Kruhøffer M, Thykjaer T, et al. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res 2004;64(11):4040-8.
-
(2004)
Cancer Res
, vol.64
, Issue.11
, pp. 4040-4048
-
-
Dyrskjøt, L.1
Kruhøffer, M.2
Thykjaer, T.3
-
23
-
-
84923188586
-
Deconstructing transcriptional heterogeneity in pluripotent stem cells
-
Kumar RM, Cahan P, Shalek AK, et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 2014;516(7529):56-61.
-
(2014)
Nature
, vol.516
, Issue.7529
, pp. 56-61
-
-
Kumar, R.M.1
Cahan, P.2
Shalek, A.K.3
-
24
-
-
84914125316
-
Comparison of the transcriptional landscapes between human and mouse tissues
-
Lin S, Lin Y, Nery JR, et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proc Natl Acad Sci USA 2014;111(48):17224-9.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.48
, pp. 17224-17229
-
-
Lin, S.1
Lin, Y.2
Nery, J.R.3
-
25
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblast-oma
-
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblast-oma. Science 2014;344(6190):1396-401.
-
(2014)
Science
, vol.344
, Issue.6190
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
-
26
-
-
84940969958
-
A reanalysis of mouse ENCODE comparative gene expression data
-
Gilad Y, Mizrahi-Man O. A reanalysis of mouse ENCODE comparative gene expression data. F1000Res 2015;4:121.
-
(2015)
F1000Res
, vol.4
, pp. 121
-
-
Gilad, Y.1
Mizrahi-Man, O.2
-
27
-
-
35748952199
-
A gene expression barcode for microarray data
-
Zilliox MJ, Irizarry RA. A gene expression barcode for microarray data. Nat Methods 2007;4(11):911-13.
-
(2007)
Nat Methods
, vol.4
, Issue.11
, pp. 911-913
-
-
Zilliox, M.J.1
Irizarry, R.A.2
-
28
-
-
85055619307
-
Correcting batch effects in single-cell RNA sequencing data by matching mutual nearest neighbours
-
Haghverdi L, Lun ATL, Morgan MD, et al. Correcting batch effects in single-cell RNA sequencing data by matching mutual nearest neighbours. bioRxiv 2017.
-
(2017)
bioRxiv
-
-
Haghverdi, L.1
Lun, A.T.L.2
Morgan, M.D.3
-
29
-
-
85014524493
-
Power analysis of single-cell RNA-sequencing experiments
-
Svensson V, Natarajan KN, Ly LH, et al. Power analysis of single-cell RNA-sequencing experiments. Nat Meth 2017;14(4):381-7.
-
(2017)
Nat Meth
, vol.14
, Issue.4
, pp. 381-387
-
-
Svensson, V.1
Natarajan, K.N.2
Ly, L.H.3
|