메뉴 건너뛰기




Volumn 9, Issue 4, 2016, Pages 1756-1787

Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems

Author keywords

Alternating minimization; Blind image deconvolution; Block coordinate descent; Dictionary learning; Heavy ball method; Kurdyka ojasiewicz property; Nonconvex and nonsmooth minimization; Sparse nonnegative matrix factorization

Indexed keywords

FACTORIZATION; LINEARIZATION; NUMERICAL METHODS; OPTIMIZATION;

EID: 85007346120     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/16M1064064     Document Type: Article
Times cited : (233)

References (36)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), pp. 4311-4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 0035620123 scopus 로고    scopus 로고
    • An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping
    • F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), pp. 3-11.
    • (2001) Set-Valued Anal. , vol.9 , pp. 3-11
    • Alvarez, F.1    Attouch, H.2
  • 3
    • 45749101721 scopus 로고    scopus 로고
    • On the convergence of the proximal algorithm for nonsmooth functions involving analytic features
    • H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), pp. 5-16.
    • (2009) Math. Program. , vol.116 , pp. 5-16
    • Attouch, H.1    Bolte, J.2
  • 4
    • 77953092582 scopus 로고    scopus 로고
    • Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality
    • H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438-457.
    • (2010) Math. Oper. Res. , vol.35 , pp. 438-457
    • Attouch, H.1    Bolte, J.2    Redont, P.3    Soubeyran, A.4
  • 6
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 8
    • 36249023228 scopus 로고    scopus 로고
    • The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
    • J. Bolte, A. Daniilidis, and A. Lewis, The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 17 (2006), pp. 1205-1223.
    • (2006) SIAM J. Optim. , vol.17 , pp. 1205-1223
    • Bolte, J.1    Daniilidis, A.2    Lewis, A.3
  • 10
    • 84905580784 scopus 로고    scopus 로고
    • Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    • J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program. Ser. A, 146 (2014), pp. 459-494.
    • (2014) Math. Program. Ser. A , vol.146 , pp. 459-494
    • Bolte, J.1    Sabach, S.2    Teboulle, M.3
  • 11
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168-1200.
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 12
    • 84901840826 scopus 로고    scopus 로고
    • Performance of first-order methods for smooth convex minimization: A novel approach
    • Y. Drori and M. Teboulle, Performance of first-order methods for smooth convex minimization: A novel approach, Math. Program., 145 (2014), pp. 451-482.
    • (2014) Math. Program. , vol.145 , pp. 451-482
    • Drori, Y.1    Teboulle, M.2
  • 14
    • 85007281225 scopus 로고    scopus 로고
    • An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems
    • R. I. Boţ and E. R. Csetnek, An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems, J. Optim. Theory Appl., (2015), pp. 1-17.
    • (2015) J. Optim. Theory Appl. , pp. 1-17
    • Boţ, R.I.1    Csetnek, E.R.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators
    • P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Appl. Math., 16 (1979), pp. 964-979.
    • (1979) SIAM J. Appl. Math. , vol.16 , pp. 964-979
    • Lions, P.L.1    Mercier, B.2
  • 18
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), pp. 503-528.
    • (1989) Math. Program. , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 19
    • 34249303170 scopus 로고    scopus 로고
    • Variational Analysis and Generalized Differentiation: I
    • Springer-Verlag, Berlin
    • B. S. Mordukhovich, Variational Analysis and Generalized Differentiation: I, Grundlehren Math. Wiss. 330, Springer-Verlag, Berlin, 2006.
    • (2006) Grundlehren Math. Wiss. , pp. 330
    • Mordukhovich, B.S.1
  • 20
    • 0000276924 scopus 로고
    • Proximitéet dualité dans un espace Hilbertien
    • J. J. Moreau, Proximitéet dualité dans un espace Hilbertien, Bull. Soc. Math. France, 93 (1965), pp. 273-299.
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • Moreau, J.J.1
  • 21
    • 0003696537 scopus 로고    scopus 로고
    • Introductory Lectures on Convex Optimization
    • Kluwer Academic, Boston
    • Y. Nesterov, Introductory Lectures on Convex Optimization, Appl. Optim. 87, Kluwer Academic, Boston, 2004.
    • (2004) Appl. Optim. , pp. 87
    • Nesterov, Y.1
  • 24
    • 84903395655 scopus 로고    scopus 로고
    • iPiano: Inertial proximal algorithm for nonconvex optimization
    • P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: Inertial proximal algorithm for nonconvex optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1388-1419.
    • (2014) SIAM J. Imaging Sci. , vol.7 , pp. 1388-1419
    • Ochs, P.1    Chen, Y.2    Brox, T.3    Pock, T.4
  • 25
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • B. A. Olshausen and D. J. Field, Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vis. Res., 37 (1997), pp. 3311-3325.
    • (1997) Vis. Res. , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 0028561099 scopus 로고
    • Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 27
    • 84855246748 scopus 로고    scopus 로고
    • Sparse nonnegative matrix factorization with l0-constraints
    • R. Peharz and F. Pernkopf, Sparse nonnegative matrix factorization with l0-constraints, Neurocomputing, 80 (2012), pp. 38-46.
    • (2012) Neurocomputing , vol.80 , pp. 38-46
    • Peharz, R.1    Pernkopf, F.2
  • 29
    • 50549197532 scopus 로고
    • Some methods of speeding up the convergence of iteration methods
    • B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), pp. 1-17.
    • (1964) USSR Comput. Math. Math. Phys. , vol.4 , pp. 1-17
    • Polyak, B.T.1
  • 30
    • 50549197532 scopus 로고
    • Some methods of speeding up the convergence of iteration methods
    • B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), pp. 1-17.
    • (1964) USSR Comput. Math. Math. Phys. , vol.4 , pp. 1-17
    • Polyak, B.T.1
  • 32
    • 0028734063 scopus 로고
    • Parameterisation of a stochastic model for human face identification
    • IEEE
    • F. Samaria and A. Harter, Parameterisation of a stochastic model for human face identification, in WACV, IEEE, 1994, pp. 138-142.
    • (1994) WACV , pp. 138-142
    • Samaria, F.1    Harter, A.2
  • 33
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • Y. Weiss, B. Schölkopf, and J. C. Platt, eds., MIT Press, Cambridge, MA
    • S. Sra and I. S. Dhillon, Generalized nonnegative matrix approximations with Bregman divergences, in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. C. Platt, eds., MIT Press, Cambridge, MA, 2006, pp. 283-290.
    • (2006) Advances in Neural Information Processing Systems 18 , pp. 283-290
    • Sra, S.1    Dhillon, I.S.2
  • 35
    • 34250078828 scopus 로고
    • Heavy-ball method in nonconvex optimization problems
    • S. K. Zavriev and F. V. Kostyuk, Heavy-ball method in nonconvex optimization problems, Comput. Math. Model., 4 (1993), pp. 336-341.
    • (1993) Comput. Math. Model. , vol.4 , pp. 336-341
    • Zavriev, S.K.1    Kostyuk, F.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.