메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 3008-3017

Inferring and Executing Programs for Visual Reasoning

Author keywords

[No Author keywords available]

Indexed keywords

ENGINES;

EID: 85041924656     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.325     Document Type: Conference Paper
Times cited : (603)

References (50)
  • 1
    • 84993660571 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to compose neural networks for question answering. In NAACL, 2016.
    • (2016) NAACL
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 5
    • 85063566337 scopus 로고    scopus 로고
    • Making neural programming architectures generalize via recursion
    • J. Cai, R. Shin, and D. Song. Making neural programming architectures generalize via recursion. In ICLR, 2017.
    • (2017) ICLR
    • Cai, J.1    Shin, R.2    Song, D.3
  • 10
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 11
    • 85041900002 scopus 로고    scopus 로고
    • Making the v in VQA matter: Elevating the role of image understanding in visual question answering
    • Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter: Elevating the role of image understanding in visual question answering. In CVPR, 2017.
    • (2017) CVPR
    • Goyal, Y.1    Khot, T.2    Summers-Stay, D.3    Batra, D.4    Parikh, D.5
  • 14
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 85041904328 scopus 로고    scopus 로고
    • Learning to reason: End-to-end module networks for visual question answering
    • R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko. Learning to reason: End-to-end module networks for visual question answering. In ICCV, 2017.
    • (2017) ICCV
    • Hu, R.1    Andreas, J.2    Rohrbach, M.3    Darrell, T.4    Saenko, K.5
  • 17
    • 85041929043 scopus 로고    scopus 로고
    • Modeling relationships in referential expressions with compositional modular networks
    • R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko. Modeling relationships in referential expressions with compositional modular networks. In CVPR, 2017.
    • (2017) CVPR
    • Hu, R.1    Rohrbach, M.2    Andreas, J.3    Darrell, T.4    Saenko, K.5
  • 18
    • 85041926703 scopus 로고    scopus 로고
    • Revisiting visual question answering baselines
    • A. Jabri, A. Joulin, and L. van der Maaten. Revisiting visual question answering baselines. In ECCV, 2016.
    • (2016) ECCV
    • Jabri, A.1    Joulin, A.2    Van der Maaten, L.3
  • 20
    • 84965117324 scopus 로고    scopus 로고
    • Inferring algorithmic patterns with stack-augmented recurrent nets
    • A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In NIPS, 2015.
    • (2015) NIPS
    • Joulin, A.1    Mikolov, T.2
  • 22
    • 85083953090 scopus 로고    scopus 로고
    • Neural GPUs learn algorithms
    • L. Kaiser and I. Sutskever. Neural GPUs learn algorithms. In ICLR, 2016.
    • (2016) ICLR
    • Kaiser, L.1    Sutskever, I.2
  • 23
    • 85146417759 scopus 로고    scopus 로고
    • Accurate unlexicalized parsing
    • D. Klein and C. D. Manning. Accurate unlexicalized parsing. In ACL, pages 423-430, 2003.
    • (2003) ACL , pp. 423-430
    • Klein, D.1    Manning, C.D.2
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS.
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 28
    • 85040923863 scopus 로고    scopus 로고
    • Neural symbolic machines: Learning semantic parsers on freebase with weak supervision
    • C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. Neural symbolic machines: Learning semantic parsers on freebase with weak supervision. ACL, 2017.
    • (2017) ACL
    • Liang, C.1    Berant, J.2    Le, Q.3    Forbus, K.D.4    Lao, N.5
  • 29
    • 84859072748 scopus 로고    scopus 로고
    • Learning dependencybased compositional semantics
    • P. Liang, M. I. Jordan, and D. Klein. Learning dependencybased compositional semantics. In ACL, 2011.
    • (2011) ACL
    • Liang, P.1    Jordan, M.I.2    Klein, D.3
  • 30
    • 85018917850 scopus 로고    scopus 로고
    • Hierarchical question-image co-attention for visual question answering
    • J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image co-attention for visual question answering. In NIPS, 2016.
    • (2016) NIPS
    • Lu, J.1    Yang, J.2    Batra, D.3    Parikh, D.4
  • 31
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • M. Malinowski and M. Fritz. A multi-world approach to question answering about real-world scenes based on uncertain input. In NIPS, 2014.
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 32
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neurons: A neural-based approach to answering questions about images. In ICCV, 2015.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 33
    • 85041909637 scopus 로고    scopus 로고
    • Learning models for actions and person-object interactions with transfer to question answering
    • A. Mallya and S. Lazebnik. Learning models for actions and person-object interactions with transfer to question answering. In ECCV, 2016.
    • (2016) ECCV
    • Mallya, A.1    Lazebnik, S.2
  • 34
    • 85083953004 scopus 로고    scopus 로고
    • Neural programmer: Inducing latent programs with gradient descent
    • A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with gradient descent. In ICLR, 2016.
    • (2016) ICLR
    • Neelakantan, A.1    Le, Q.V.2    Sutskever, I.3
  • 35
    • 85083952850 scopus 로고    scopus 로고
    • Neural programmer-interpreters
    • S. Reed and N. De Freitas. Neural programmer-interpreters. In ICLR, 2016.
    • (2016) ICLR
    • Reed, S.1    De Freitas, N.2
  • 38
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 41
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8 (23), 1992.
    • (1992) Machine Learning , vol.8 , Issue.23
    • Williams, R.J.1
  • 44
    • 84999008900 scopus 로고    scopus 로고
    • Dynamic memory networks for visual and textual question answering
    • C. Xiong, S. Merity, and R. Socher. Dynamic memory networks for visual and textual question answering. ICML, 2016.
    • (2016) ICML
    • Xiong, C.1    Merity, S.2    Socher, R.3
  • 45
    • 84986334021 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question answering. In CVPR, 2016.
    • (2016) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.5
  • 50
    • 84986275767 scopus 로고    scopus 로고
    • Visual7W: Grounded question answering in images
    • Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7W: Grounded question answering in images. In CVPR, 2016.
    • (2016) CVPR
    • Zhu, Y.1    Groth, O.2    Bernstein, M.3    Fei-Fei, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.