메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5014-5022

Yin and Yang: Balancing and answering binary visual questions

Author keywords

[No Author keywords available]

Indexed keywords

BINS; COMPUTER VISION; PATTERN RECOGNITION; SEMANTICS;

EID: 84986278354     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.542     Document Type: Conference Paper
Times cited : (363)

References (40)
  • 1
    • 85009933593 scopus 로고    scopus 로고
    • Keras: Theano-based deep learning library
    • Keras: Theano-based deep learning library. https://github.com/fchollet/keras.git, 2015.
    • (2015)
  • 3
    • 84959209132 scopus 로고    scopus 로고
    • Zero-Shot Learning via Visual Abstraction
    • S. Antol, C. L. Zitnick, and D. Parikh. Zero-Shot Learning via Visual Abstraction. In ECCV, 2014.
    • (2014) ECCV
    • Antol, S.1    Zitnick, C.L.2    Parikh, D.3
  • 5
    • 84887349875 scopus 로고    scopus 로고
    • Simultaneous active learning of classifiers & attributes via relative feedback
    • A. Biswas and D. Parikh. Simultaneous active learning of classifiers & attributes via relative feedback. In CVPR, 2013.
    • (2013) CVPR
    • Biswas, A.1    Parikh, D.2
  • 6
    • 84957029470 scopus 로고    scopus 로고
    • Mind's eye: A recurrent visual representation for image caption generation
    • X. Chen and C. L. Zitnick. Mind's Eye: A Recurrent Visual Representation for Image Caption Generation. In CVPR, 2015.
    • (2015) CVPR
    • Chen, X.1    Zitnick, C.L.2
  • 9
    • 84856671941 scopus 로고    scopus 로고
    • Annotator rationales for visual recognition
    • J. Donahue and K. Grauman. Annotator rationales for visual recognition. In ICCV, 2011.
    • (2011) ICCV
    • Donahue, J.1    Grauman, K.2
  • 11
    • 80053288463 scopus 로고    scopus 로고
    • Identifying relations for open information extraction
    • A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction. In EMNLP, 2011.
    • (2011) EMNLP
    • Fader, A.1    Soderland, S.2    Etzioni, O.3
  • 13
    • 84911394491 scopus 로고    scopus 로고
    • Predicting object dynamics in scenes
    • D. F. Fouhey and C. Zitnick. Predicting object dynamics in scenes. In CVPR, 2014.
    • (2014) CVPR
    • Fouhey, D.F.1    Zitnick, C.2
  • 14
    • 84965148420 scopus 로고    scopus 로고
    • Are you talking to a machine? Dataset and methods for multilingual image question answering
    • H. Gao, J. Mao, J. Zhou, Z. Huang, and A. Yuille. Are you talking to a machine? dataset and methods for multilingual image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Gao, H.1    Mao, J.2    Zhou, J.3    Huang, Z.4    Yuille, A.5
  • 15
  • 17
    • 85106746987 scopus 로고    scopus 로고
    • Hunpos-an open source trigram tagger
    • P. Halcsy, A. Kornai, and C. Oravecz. Hunpos-an open source trigram tagger. In ACL, 2007.
    • (2007) ACL
    • Halcsy, P.1    Kornai, A.2    Oravecz, C.3
  • 19
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 20
    • 85009861505 scopus 로고    scopus 로고
    • Identifying relations for open information extraction
    • A. Karpathy, A. Joulin, and F.-F. Li. Identifying relations for open information extraction. In NIPS, 2014.
    • (2014) NIPS
    • Karpathy, A.1    Joulin, A.2    Li, F.-F.3
  • 21
    • 84952349298 scopus 로고    scopus 로고
    • Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
    • R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. TACL, 2015.
    • (2015) TACL
    • Kiros, R.1    Salakhutdinov, R.2    Zemel, R.S.3
  • 23
    • 84959227898 scopus 로고    scopus 로고
    • Don't just listen, use your imagination: Leveraging visual common sense for non-visual tasks
    • X. Lin and D. Parikh. Don't just listen, use your imagination: Leveraging visual common sense for non-visual tasks. In CVPR, 2015.
    • (2015) CVPR
    • Lin, X.1    Parikh, D.2
  • 24
    • 84937822746 scopus 로고    scopus 로고
    • A multi-world approach to question answering about real-world scenes based on uncertain input
    • M. Malinowski and M. Fritz. A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input. In NIPS, 2014.
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 25
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neurons: A neural-based approach to answering questions about images. In ICCV, 2015.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 27
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed Representations of Words and Phrases and their Compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 28
    • 84887393691 scopus 로고    scopus 로고
    • Attributes for classifier feedback
    • A. Parkash and D. Parikh. Attributes for classifier feedback. In ECCV, 2012.
    • (2012) ECCV
    • Parkash, A.1    Parikh, D.2
  • 29
    • 84965170394 scopus 로고    scopus 로고
    • Exploring models and data for image question answering
    • M. Ren, R. Kiros, and R. Zemel. Exploring models and data for image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.3
  • 30
    • 84959184467 scopus 로고    scopus 로고
    • Viske: Visual knowledge extraction and question answering by visual verification of relation phrases
    • F. Sadeghi, S. K. Kumar Divvala, and A. Farhadi. Viske: Visual knowledge extraction and question answering by visual verification of relation phrases. In CVPR, 2015.
    • (2015) CVPR
    • Sadeghi, F.1    Kumar Divvala, S.K.2    Farhadi, A.3
  • 32
    • 84881046414 scopus 로고    scopus 로고
    • Unbiased look at the bias
    • A. Torralba and A. Efros. Unbiased look at the bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.2
  • 33
    • 84901405262 scopus 로고    scopus 로고
    • Joint video and text parsing for understanding events and answering queries
    • K. Tu, M. Meng, M. W. Lee, T. E. Choe, and S. C. Zhu. Joint Video and Text Parsing for Understanding Events and Answering Queries. IEEE MultiMedia, 2014.
    • (2014) IEEE MultiMedia
    • Tu, K.1    Meng, M.2    Lee, M.W.3    Choe, T.E.4    Zhu, S.C.5
  • 35
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and Tell: A Neural Image Caption Generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 37
    • 77957858975 scopus 로고    scopus 로고
    • Using annotator rationales to improve machine learning for text categorization
    • O. Zaidan, J. Eisner, and C. Piatko. Using annotator rationales to improve machine learning for text categorization. In NAACL-HLT, 2007.
    • (2007) NAACL-HLT
    • Zaidan, O.1    Eisner, J.2    Piatko, C.3
  • 38
    • 84887338442 scopus 로고    scopus 로고
    • Bringing semantics into focus using visual abstraction
    • C. L. Zitnick and D. Parikh. Bringing Semantics Into Focus Using Visual Abstraction. In CVPR, 2013.
    • (2013) CVPR
    • Zitnick, C.L.1    Parikh, D.2
  • 39
    • 84898772194 scopus 로고    scopus 로고
    • Learning the visual interpretation of sentences
    • C. L. Zitnick, D. Parikh, and L. Vanderwende. Learning the Visual Interpretation of Sentences. In ICCV, 2013.
    • (2013) ICCV
    • Zitnick, C.L.1    Parikh, D.2    Vanderwende, L.3
  • 40
    • 84959182108 scopus 로고    scopus 로고
    • Adopting abstract images for semantic scene understanding
    • C. L. Zitnick, R. Vedantam, and D. Parikh. Adopting Abstract Images for Semantic Scene Understanding. PAMI, 2015.
    • (2015) PAMI
    • Zitnick, C.L.1    Vedantam, R.2    Parikh, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.