-
1
-
-
85018904820
-
DeepMath - Deep sequence models for premise selection
-
Alex A. Alemi, François Chollet, Geoffrey Irving, Christian Szegedy, and Josef Urban. DeepMath - deep sequence models for premise selection. In Proocedings of the 29th Conference on Advances in Neural Information Processing Systems (NIPS), 2016.
-
(2016)
Proocedings of the 29th Conference on Advances in Neural Information Processing Systems (NIPS)
-
-
Alemi, A.A.1
Chollet, F.2
Irving, G.3
Szegedy, C.4
Urban, J.5
-
2
-
-
85018926711
-
Adaptive neural compilation
-
Rudy R Bunel, Alban Desmaison, Pawan K Mudigonda, Pushmeet Kohli, and Philip Torr. Adaptive neural compilation. In Proceedings of the 29th Conference on Advances in Neural Information Processing Systems (NIPS), 2016.
-
(2016)
Proceedings of the 29th Conference on Advances in Neural Information Processing Systems (NIPS)
-
-
Bunel, R.R.1
Desmaison, A.2
Mudigonda, P.K.3
Kohli, P.4
Torr, P.5
-
3
-
-
0029372831
-
The Helmholtz machine
-
Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The Helmholtz machine. Neural computation, 7(5):889-904, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
4
-
-
84865223006
-
On label dependence and loss minimization in multi-label classification
-
Krzysztof Dembczynski, ´ Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier. On label dependence and loss minimization in multi-label classification. Machine Learning, 88(1):5-45, 2012.
-
(2012)
Machine Learning
, vol.88
, Issue.1
, pp. 5-45
-
-
Dembczynski, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
7
-
-
85026875582
-
-
CoRR, abs/1608.04428
-
Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. CoRR, abs/1608.04428, 2016. URL http://arxiv.org/abs/1608.04428.
-
(2016)
Terpret: A Probabilistic Programming Language for Program Induction
-
-
Gaunt, A.L.1
Brockschmidt, M.2
Singh, R.3
Kushman, N.4
Kohli, P.5
Taylor, J.6
Tarlow, D.7
-
9
-
-
84993949467
-
Hybrid computing using a neural network with dynamic external memory
-
Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwinska, ´ Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural network with dynamic external memory. Nature, 2016.
-
(2016)
Nature
-
-
Graves, A.1
Wayne, G.2
Reynolds, M.3
Harley, T.4
Danihelka, I.5
Grabska-Barwinska, A.6
Colmenarejo, S.G.7
Grefenstette, E.8
Ramalho, T.9
Agapiou, J.10
-
14
-
-
84953881854
-
The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models
-
Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V Gehler. The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models. Computer Vision and Image Understanding, 136:32-44, 2015.
-
(2015)
Computer Vision and Image Understanding
, vol.136
, pp. 32-44
-
-
Jampani, V.1
Nowozin, S.2
Loper, M.3
Gehler, P.V.4
-
20
-
-
85011954268
-
Latent predictor networks for code generation
-
Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Andrew Senior, Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016.
-
(2016)
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
-
-
Ling, W.1
Grefenstette, E.2
Hermann, K.M.3
Kočiský, T.4
Senior, A.5
Wang, F.6
Blunsom, P.7
-
21
-
-
85031040507
-
-
CoRR, abs/1701.06972
-
Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof search. CoRR, abs/1701.06972, 2017. URL http://arxiv.org/abs/1701.06972.
-
(2017)
Deep Network Guided Proof Search
-
-
Loos, S.M.1
Irving, G.2
Szegedy, C.3
Kaliszyk, C.4
-
22
-
-
84897476983
-
A machine learning framework for programming by example
-
Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W Lampson, and Adam Kalai. A machine learning framework for programming by example. In Proceedings of the International Conference on Machine Learning (ICML), 2013.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
-
-
Menon, A.K.1
Tamuz, O.2
Gulwani, S.3
Lampson, B.W.4
Kalai, A.5
-
24
-
-
84969800769
-
Learning program embeddings to propagate feedback on student code
-
Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and Leonidas J. Guibas. Learning program embeddings to propagate feedback on student code. In Proceedings of the 32nd International Conference on Machine Learning (ICML), 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML)
-
-
Piech, C.1
Huang, J.2
Nguyen, A.3
Phulsuksombati, M.4
Sahami, M.5
Guibas, L.J.6
-
28
-
-
84957877612
-
Stochastic program optimization
-
Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic program optimization. Commununications of the ACM, 59(2):114-122, 2016.
-
(2016)
Commununications of the ACM
, vol.59
, Issue.2
, pp. 114-122
-
-
Schkufza, E.1
Sharma, R.2
Aiken, A.3
-
29
-
-
84872027140
-
Real-time human pose recognition in parts from single depth images
-
Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in parts from single depth images. Communications of the ACM, 56(1):116-124, 2013.
-
(2013)
Communications of the ACM
, vol.56
, Issue.1
, pp. 116-124
-
-
Shotton, J.1
Sharp, T.2
Kipman, A.3
Fitzgibbon, A.4
Finocchio, M.5
Blake, A.6
Cook, M.7
Moore, R.8
|