메뉴 건너뛰기




Volumn , Issue , 2016, Pages 289-297

Hierarchical question-image co-attention for visual question answering

Author keywords

[No Author keywords available]

Indexed keywords

ATTENTION MECHANISMS; ATTENTION MODEL; CONVOLUTION NEURAL NETWORK; IMAGE REGIONS; QUESTION ANSWERING; SPATIAL MAPS; STATE OF THE ART; VISUAL ATTENTION;

EID: 85018917850     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1752)

References (27)
  • 1
    • 84985013144 scopus 로고    scopus 로고
    • Deep compositional question answering with neural module networks
    • Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Deep compositional question answering with neural module networks. In CVPR, 2016.
    • (2016) CVPR
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 3
    • 85083953689 scopus 로고    scopus 로고
    • Neural Machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.
    • (2015) ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 6
    • 84965148420 scopus 로고    scopus 로고
    • Are you talking to a Machine? Dataset and methods for multilingual image question answering
    • Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu. Are you talking to a machine? dataset and methods for multilingual image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Gao, H.1    Mao, J.2    Zhou, J.3    Huang, Z.4    Wang, L.5    Xu, W.6
  • 7
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 9
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures for matching natural language sentences. In NIPS, 2014.
    • (2014) NIPS
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 13
    • 85007153677 scopus 로고    scopus 로고
    • Learning to answer questions from image using convolutional neural network
    • Lin Ma, Zhengdong Lu, and Hang Li. Learning to answer questions from image using convolutional neural network. In AAAI, 2016.
    • (2016) AAAI
    • Ma, L.1    Lu, Z.2    Li, H.3
  • 14
    • 84973896625 scopus 로고    scopus 로고
    • Ask your neurons: A neural-based approach to answering questions about images
    • Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A neural-based approach to answering questions about images. In ICCV, 2015.
    • (2015) ICCV
    • Malinowski, M.1    Rohrbach, M.2    Fritz, M.3
  • 15
    • 84965170394 scopus 로고    scopus 로고
    • Exploring models and data for image question answering
    • Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image question answering. In NIPS, 2015.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.3
  • 18
    • 84986327457 scopus 로고    scopus 로고
    • Where to look: Focus regions for visual question answering
    • Kevin J Shih, Saurabh Singh, and Derek Hoiem. Where to look: Focus regions for visual question answering. In CVPR, 2016.
    • (2016) CVPR
    • Shih, K.J.1    Singh, S.2    Hoiem, D.3
  • 19
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 21
    • 84999008900 scopus 로고    scopus 로고
    • Dynamic memory networks for visual and textual question answering
    • Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual and textual question answering. In ICML, 2016.
    • (2016) ICML
    • Xiong, C.1    Merity, S.2    Socher, R.3
  • 23
    • 84986334021 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for image question answering. In CVPR, 2016.
    • (2016) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.5
  • 24
    • 85015342918 scopus 로고    scopus 로고
    • Abcnn: Attention-based convolutional neural network for modeling sentence pairs
    • Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. In ACL, 2016.
    • (2016) ACL
    • Yin, W.1    Schütze, H.2    Xiang, B.3    Zhou, B.4
  • 26
    • 84986275767 scopus 로고    scopus 로고
    • Visual7w: Grounded question answering in images
    • Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7w: Grounded question answering in images. In CVPR, 2016.
    • (2016) CVPR
    • Zhu, Y.1    Groth, O.2    Bernstein, M.3    Fei-Fei, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.