메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages 23-33

Neural symbolic machines: Learning semantic parsers on freebase with weak supervision

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; DIGITAL STORAGE; KNOWLEDGE BASED SYSTEMS; LINGUISTICS; MAXIMUM LIKELIHOOD; PROGRAM INTERPRETERS; SEMANTICS; SPEECH RECOGNITION;

EID: 85040923863     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/P17-1003     Document Type: Conference Paper
Times cited : (359)

References (44)
  • 1
    • 85040912737 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • abs/
    • Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Learning to compose neural networks for question answering. CoRR abs/1601.01705.
    • (2016) CoRR
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 2
    • 84921977518 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • abs/
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473. http://arxiv.org/abs/1409.0473.
    • (2014) CoRR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 3
    • 84904308637 scopus 로고    scopus 로고
    • Semantic parsing on freebase from question-answer pairs
    • Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In EMNLP. volume 2, page 6.
    • (2013) EMNLP , vol.2 , pp. 6
    • Berant, J.1    Chou, A.2    Frostig, R.3    Liang, P.4
  • 4
    • 85011867191 scopus 로고    scopus 로고
    • Imitation learning of agenda-based semantic parsers
    • Jonathan Berant and Percy Liang. 2015. Imitation learning of agenda-based semantic parsers. TACL 3:545-558.
    • (2015) TACL , vol.3 , pp. 545-558
    • Berant, J.1    Liang, P.2
  • 7
    • 67349244372 scopus 로고    scopus 로고
    • Search-based structured prediction
    • H. Daume, J. Langford, and D. Marcu. 2009. Search-based structured prediction. Machine Learning 75:297-325.
    • (2009) Machine Learning , vol.75 , pp. 297-325
    • Daume, H.1    Langford, J.2    Marcu, D.3
  • 16
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • abs/
    • Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR abs/1412.6980. http://arxiv.org/abs/1412.6980.
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2
  • 20
    • 85040919009 scopus 로고    scopus 로고
    • Neural programmer: Inducing latent programs with gradient descent
    • abs/
    • Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. 2015. Neural programmer: Inducing latent programs with gradient descent. CoRR abs/1511.04834.
    • (2015) CoRR
    • Neelakantan, A.1    Le, Q.V.2    Sutskever, I.3
  • 22
    • 84943788139 scopus 로고    scopus 로고
    • Compositional semantic parsing on semi-structured tables
    • Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. In ACL.
    • (2015) ACL
    • Pasupat, P.1    Liang, P.2
  • 23
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 25
    • 85083952850 scopus 로고    scopus 로고
    • Neural programmer-interpreters
    • Scott Reed and Nando de Freitas. 2016. Neural programmer-interpreters. In ICLR.
    • (2016) ICLR
    • Reed, S.1    de Freitas, N.2
  • 28
    • 1642328943 scopus 로고    scopus 로고
    • Optimal ordered problem solver
    • Jürgen Schmidhuber. 2004. Optimal ordered problem solver. Machine Learning 54(3):211-254.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 211-254
    • Schmidhuber, J.1
  • 35
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Machine Learning. pages 229-256.
    • (1992) Machine Learning , pp. 229-256
    • Williams, R.J.1
  • 36
    • 85016034015 scopus 로고    scopus 로고
    • Sequence-to-sequence learning as beam-search optimization
    • abs/
    • Sam Wiseman and Alexander M. Rush. 2016. Sequence-to-sequence learning as beam-search optimization. CoRR abs/1606.02960. http://arxiv.org/abs/1606.02960.
    • (2016) CoRR
    • Wiseman, S.1    Rush, A.M.2
  • 41
    • 85040925412 scopus 로고    scopus 로고
    • Learning to skim text
    • Adam Yu, Hongrae Lee, and Quoc Le. 2017. Learning to skim text. In ACL.
    • (2017) ACL
    • Yu, A.1    Lee, H.2    Le, Q.3
  • 44
    • 36348934176 scopus 로고    scopus 로고
    • Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars
    • L. S. Zettlemoyer and M. Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In Uncertainty in Artificial Intelligence (UAI). pages 658-666.
    • (2005) Uncertainty in Artificial Intelligence (UAI) , pp. 658-666
    • Zettlemoyer, L.S.1    Collins, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.