메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5729-5738

Self-supervised video representation learning with odd-one-out networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS; NEURAL NETWORKS; VIDEO RECORDING;

EID: 85041924012     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.607     Document Type: Conference Paper
Times cited : (400)

References (46)
  • 3
    • 85162003508 scopus 로고    scopus 로고
    • Slow, decorrelated features for pretraining complex cell-like networks
    • In, 1, 2
    • Y. Bengio and J. S. Bergstra. Slow, decorrelated features for pretraining complex cell-like networks. In NIPS, 2009. 1, 2
    • (2009) NIPS , vol.1 , pp. 2
    • Bengio, Y.1    Bergstra, J.S.2
  • 4
    • 85044505731 scopus 로고    scopus 로고
    • Action recognition with dynamic image networks
    • abs/1612.00738, 5
    • H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. Action recognition with dynamic image networks. CoRR, abs/1612.00738, 2016. 5
    • (2016) CoRR
    • Bilen, H.1    Fernando, B.2    Gavves, E.3    Vedaldi, A.4
  • 5
    • 84986334053 scopus 로고    scopus 로고
    • Dynamic image networks for action recognition
    • In 1, 2, 3, 5, 6, 8
    • H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action recognition. In CVPR, 2016. 1, 2, 3, 5, 6, 8
    • (2016) CVPR
    • Bilen, H.1    Fernando, B.2    Gavves, E.3    Vedaldi, A.4    Gould, S.5
  • 6
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • 1, 2
    • H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition. Biological cybernetics, 59(4-5):291-294, 1988. 1, 2
    • (1988) Biological Cybernetics , vol.59 , Issue.4-5 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 7
    • 85044540872 scopus 로고    scopus 로고
    • Learning transformational invariants from natural movies
    • In 2
    • C. Cadieu and B. A. Olshausen. Learning transformational invariants from natural movies. In NIPS, 2008. 2
    • (2008) NIPS
    • Cadieu, C.1    Olshausen, B.A.2
  • 10
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • In 1, 2
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015. 1, 2
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 11
    • 84906504048 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition
    • abs/1310.1531, 6
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531, 2013. 6
    • (2013) CoRR
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 12
    • 84937964776 scopus 로고    scopus 로고
    • Discriminative unsupervised feature learning with convolutional neural networks
    • In, 1, 2
    • A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature learning with convolutional neural networks. In NIPS, 2014. 1, 2
    • (2014) NIPS
    • Dosovitskiy, A.1    Springenberg, J.T.2    Riedmiller, M.3    Brox, T.4
  • 13
    • 84986290213 scopus 로고    scopus 로고
    • Discriminative hierarchical rank pooling for activity recognition
    • In 2
    • B. Fernando, P. Anderson, M. Hutter, and S. Gould. Discriminative hierarchical rank pooling for activity recognition. In CVPR, 2016. 2
    • (2016) CVPR
    • Fernando, B.1    Anderson, P.2    Hutter, M.3    Gould, S.4
  • 16
    • 84998887168 scopus 로고    scopus 로고
    • Learning end-to-end video classification with rank-pooling
    • In 3
    • B. Fernando and S. Gould. Learning end-to-end video classification with rank-pooling. In ICML, 2016. 3
    • (2016) ICML
    • Fernando, B.1    Gould, S.2
  • 17
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • In 8
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006. 8
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 20
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and helmholtz free energy
    • 1, 2
    • G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length, and helmholtz free energy. NIPS, 1994. 1, 2
    • (1994) NIPS
    • Hinton, G.E.1    Zemel, R.S.2
  • 22
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • 5
    • S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. PAMI, 35(1):221-231, 2013. 5
    • (2013) PAMI , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • In 3
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. 3
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84856682691 scopus 로고    scopus 로고
    • Hmdb: A large video database for human motion recognition
    • In 6
    • H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database for human motion recognition. In ICCV, 2011. 6
    • (2011) ICCV
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.4    Serre, T.5
  • 26
    • 85018976356 scopus 로고    scopus 로고
    • Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions
    • 2
    • B. G. V. Kumar, G. Carneiro, and I. D. Reid. Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions. CoRR, 2015. 2
    • (2015) CoRR
    • Kumar, B.G.V.1    Carneiro, G.2    Reid, I.D.3
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 1
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. 1
    • (1998) Proceedings of The IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 28
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • In 2
    • H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS, 2009. 2
    • (2009) NIPS
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.Y.4
  • 29
    • 84986305500 scopus 로고    scopus 로고
    • Vlad3: Encoding dynamics of deep features for action recognition
    • In 2
    • Y. Li, W. Li, V. Mahadevan, and N. Vasconcelos. Vlad3: Encoding dynamics of deep features for action recognition. In CVPR, 2016. 2
    • (2016) CVPR
    • Li, Y.1    Li, W.2    Mahadevan, V.3    Vasconcelos, N.4
  • 32
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • In 1, 2, 8
    • H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In ICML, 2009. 1, 2, 8
    • (2009) ICML
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 36
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using lstms
    • In 2
    • N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using lstms. In ICML, 2015. 2
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 37
    • 84973863239 scopus 로고    scopus 로고
    • Human action recognition using factorized spatio-temporal convolutional networks
    • In 2, 3, 5
    • L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action recognition using factorized spatio-temporal convolutional networks. In ICCV, 2015. 2, 3, 5
    • (2015) ICCV
    • Sun, L.1    Jia, K.2    Yeung, D.-Y.3    Shi, B.E.4
  • 38
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • In 5
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014. 5
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 41
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • 3
    • H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103:60-79, 2013. 3
    • (2013) IJCV , vol.103 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4
  • 42
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • In 3
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 3
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 43
    • 85019099168 scopus 로고    scopus 로고
    • Temporal segment networks: Towards good practices for deep action recognition
    • In 2, 3, 5, 8
    • L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment networks: towards good practices for deep action recognition. In ECCV, 2016. 2, 3, 5, 8
    • (2016) ECCV
    • Wang, L.1    Xiong, Y.2    Wang, Z.3    Qiao, Y.4    Lin, D.5    Tang, X.6    Van Gool, L.7
  • 44
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • In 1, 2, 8
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV, 2015. 1, 2, 8
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 45
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • 1, 2
    • L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 14(4):715-770, 2002. 1, 2
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 46
    • 84973898486 scopus 로고    scopus 로고
    • Exploiting image-trained CNN architectures for unconstrained video classification
    • In 3
    • S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov. Exploiting image-trained CNN architectures for unconstrained video classification. In BMVC, 2015. 3
    • (2015) BMVC
    • Zha, S.1    Luisier, F.2    Andrews, W.3    Srivastava, N.4    Salakhutdinov, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.