메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2658-2667

Actions ~ Transformations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION;

EID: 84986268683     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.291     Document Type: Conference Paper
Times cited : (241)

References (60)
  • 1
    • 24644437539 scopus 로고
    • Signature verification using a siamese time delay neural network
    • J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verification using a siamese time delay neural network. NIPS, 1993.
    • (1993) NIPS
    • Bromley, J.1    Guyon, I.2    LeCun, Y.3    Sackinger, E.4    Shah, R.5
  • 2
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. CVPR, 2005.
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 3
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. In ECCV, 2006.
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 5
    • 84887336656 scopus 로고    scopus 로고
    • Modeling actions through state changes
    • A. Fathi and J. M. Rehg. Modeling actions through state changes. In ICCV, 2013.
    • (2013) ICCV
    • Fathi, A.1    Rehg, J.M.2
  • 7
    • 84959230113 scopus 로고    scopus 로고
    • Devnet: A deep event network for multimedia event detection and evidence recounting
    • C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Hauptmann. Devnet: A deep event network for multimedia event detection and evidence recounting. CVPR, 2015.
    • (2015) CVPR
    • Gan, C.1    Wang, N.2    Yang, Y.3    Yeung, D.-Y.4    Hauptmann, A.G.5
  • 8
    • 84959196122 scopus 로고    scopus 로고
    • Finding action tubes
    • G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015.
    • (2015) CVPR
    • Gkioxari, G.1    Malik, J.2
  • 9
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 10
    • 84959216468 scopus 로고    scopus 로고
    • Activitynet: A large-scale video benchmark for human activity understanding
    • F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles. Activitynet: A large-scale video benchmark for human activity understanding. CVPR, 2015.
    • (2015) CVPR
    • Heilbron, F.C.1    Escorcia, V.2    Ghanem, B.3    Niebles, J.C.4
  • 11
    • 85009910964 scopus 로고    scopus 로고
    • Deep metric learning using triplet network
    • /abs/1412.6622
    • E. Hoffer and N. Ailon. Deep metric learning using triplet network. CoRR, /abs/1412.6622, 2014.
    • (2014) CoRR
    • Hoffer, E.1    Ailon, N.2
  • 12
    • 84911459575 scopus 로고    scopus 로고
    • Discriminative deep metric learning for face verification in the wild
    • June
    • J. Hu, J. Lu, and Y.-P. Tan. Discriminative deep metric learning for face verification in the wild. In CVPR, June 2014.
    • (2014) CVPR
    • Hu, J.1    Lu, J.2    Tan, Y.-P.3
  • 13
    • 84887479105 scopus 로고    scopus 로고
    • Recognizing complex events using large margin joint low-level event model
    • H. Izadinia and M. Shah. Recognizing complex events using large margin joint low-level event model. ECCV, 2012.
    • (2012) ECCV
    • Izadinia, H.1    Shah, M.2
  • 14
    • 84887337772 scopus 로고    scopus 로고
    • Representing videos using mid-level discriminative patches
    • A. Jain, A. Gupta, M. Rodriguez, and L. S. Davis. Representing videos using mid-level discriminative patches. In CVPR, 2013.
    • (2013) CVPR
    • Jain, A.1    Gupta, A.2    Rodriguez, M.3    Davis, L.S.4
  • 15
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recognition. CVPR, 2013.
    • (2013) CVPR
    • Jain, M.1    Jegou, H.2    Bouthemy, P.3
  • 16
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representations tied to ego-motion
    • D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV, 2015.
    • (2015) ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 17
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. TPAMI, 2013.
    • (2013) TPAMI
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 18
    • 84877645596 scopus 로고    scopus 로고
    • Trajectory-based modeling of human actions with motion reference points
    • Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo. Trajectory-based modeling of human actions with motion reference points. In ECCV, 2012.
    • (2012) ECCV
    • Jiang, Y.-G.1    Dai, Q.2    Xue, X.3    Liu, W.4    Ngo, C.-W.5
  • 20
    • 79959766559 scopus 로고    scopus 로고
    • Consumer video understanding: A benchmark database and an evaluation of human and machine performance
    • Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer video understanding: A benchmark database and an evaluation of human and machine performance. In ICMR, 2011.
    • (2011) ICMR
    • Jiang, Y.-G.1    Ye, G.2    Chang, S.-F.3    Ellis, D.4    Loui, A.C.5
  • 22
    • 84898426452 scopus 로고    scopus 로고
    • A spatiotemporal descriptor based on 3d-gradients
    • A. Klaser, M. Marszalek, and C. Schmid. A spatiotemporal descriptor based on 3d-gradients. In BMVC, 2008.
    • (2008) BMVC
    • Klaser, A.1    Marszalek, M.2    Schmid, C.3
  • 24
    • 84973931670 scopus 로고    scopus 로고
    • Action recognition by hierarchical mid-level action elements
    • T. Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition by hierarchical mid-level action elements. In ICCV, 2015.
    • (2015) ICCV
    • Lan, T.1    Zhu, Y.2    Zamir, A.R.3    Savarese, S.4
  • 25
    • 84959241532 scopus 로고    scopus 로고
    • Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition
    • Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Lan, Z.1    Lin, M.2    Li, X.3    Hauptmann, A.G.4    Raj, B.5
  • 26
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • I. Laptev. On space-time interest points. IJCV, 64, 2005.
    • (2005) IJCV , pp. 64
    • Laptev, I.1
  • 28
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Q. V. Le,W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 29
    • 77953178862 scopus 로고    scopus 로고
    • Trajectons: Action recognition through the motion analysis of tracked features
    • P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition through the motion analysis of tracked features. In ICCV Workshops, 2009.
    • (2009) ICCV Workshops
    • Matikainen, P.1    Hebert, M.2    Sukthankar, R.3
  • 31
    • 84906500926 scopus 로고    scopus 로고
    • Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice
    • abs/1405.4506
    • X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. CoRR, /abs/1405.4506, 2014.
    • (2014) CoRR
    • Peng, X.1    Wang, L.2    Wang, X.3    Qiao, Y.4
  • 32
    • 84947130265 scopus 로고    scopus 로고
    • Action recognition with stacked fisher vectors
    • X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV, 2014.
    • (2014) ECCV , pp. 2
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 33
    • 77949275097 scopus 로고    scopus 로고
    • A survey on vision-based human action recognition
    • R. Poppe. A survey on vision-based human action recognition. Image and vision computing, 28(6):976-990, 2010.
    • (2010) Image and Vision Computing , vol.28 , Issue.6 , pp. 976-990
    • Poppe, R.1
  • 36
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A highlevel representation of activity in video
    • S. Sadanand and J. J. Corso. Action bank: A highlevel representation of activity in video. In CVPR, 2012.
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 38
    • 84938239875 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • abs/1312.6034
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR, /abs/1312.6034, 2013.
    • (2013) CoRR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 39
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 41
    • 84887335980 scopus 로고    scopus 로고
    • Action recognition by hierarchical sequence summarization
    • Y. Song, L.-P. Morency, and R. Davis. Action recognition by hierarchical sequence summarization. In CVPR, 2013.
    • (2013) CVPR
    • Song, Y.1    Morency, L.-P.2    Davis, R.3
  • 42
    • 84893702065 scopus 로고    scopus 로고
    • Ucf101: A dataset of 101 human actions classes from videos in the wild
    • abs/1212.0402
    • K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. CoRR, /abs/1212.0402, 2012.
    • (2012) CoRR
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 43
    • 84962900096 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using lstms
    • abs/1502.04681
    • N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using lstms. CoRR, /abs/1502.04681, 2015.
    • (2015) CoRR
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 44
    • 84898775956 scopus 로고    scopus 로고
    • Active: Activity concept transitions in video event classification
    • C. Sun and R. Nevatia. Active: Activity concept transitions in video event classification. ICCV, 2013.
    • (2013) ICCV
    • Sun, C.1    Nevatia, R.2
  • 45
    • 84962876036 scopus 로고    scopus 로고
    • Temporal localization of fine-grained actions in videos by domain transfer from web images
    • C. Sun, S. Shetty, R. Sukthankar, and R. Nevatia. Temporal localization of fine-grained actions in videos by domain transfer from web images. In ACM Multimedia, 2015.
    • (2015) ACM Multimedia
    • Sun, C.1    Shetty, S.2    Sukthankar, R.3    Nevatia, R.4
  • 46
    • 84973863239 scopus 로고    scopus 로고
    • Human action recognition using factorized spatio-temporal convolutional networks
    • L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action recognition using factorized spatio-temporal convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Sun, L.1    Jia, K.2    Yeung, D.-Y.3    Shi, B.E.4
  • 47
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012.
    • (2012) CVPR
    • Tang, K.1    Fei-Fei, L.2    Koller, D.3
  • 48
    • 84867652321 scopus 로고    scopus 로고
    • Convolutional learning of spatio-temporal features
    • G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In ECCV, 2010.
    • (2010) ECCV
    • Taylor, G.W.1    Fergus, R.2    LeCun, Y.3    Bregler, C.4
  • 49
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3d convolutional networks
    • D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 51
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 52
    • 84955282488 scopus 로고    scopus 로고
    • Action recognition with trajectory-pooled deep-convolutional descriptors
    • L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. In CVPR, 2015.
    • (2015) CVPR
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 53
    • 84961995462 scopus 로고    scopus 로고
    • Towards good practices for very deep two-stream convnets
    • abs/1507.02159
    • L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good practices for very deep two-stream convnets. CoRR, /abs/1507.02159, 2015.
    • (2015) CoRR
    • Wang, L.1    Xiong, Y.2    Wang, Z.3    Qiao, Y.4
  • 54
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 55
    • 79957467077 scopus 로고    scopus 로고
    • Hidden part models for human action recognition: Probabilistic vs max-margin
    • Y. Wang and G. Mori. Hidden part models for human action recognition: Probabilistic vs. max-margin. TPAMI, 2011.
    • (2011) TPAMI
    • Wang, Y.1    Mori, G.2
  • 56
    • 84911433150 scopus 로고    scopus 로고
    • Towards good practices for action video encoding
    • J. Wu, Y. Zhang, and W. Lin. Towards good practices for action video encoding. CVPR, 2014.
    • (2014) CVPR
    • Wu, J.1    Zhang, Y.2    Lin, W.3
  • 57
    • 84962921420 scopus 로고    scopus 로고
    • Modeling spatial-temporal clues in a hybrid deep learning framework for video classification
    • Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue. Modeling spatial-temporal clues in a hybrid deep learning framework for video classification. In ACM Multimedia, 2015.
    • (2015) ACM Multimedia
    • Wu, Z.1    Wang, X.2    Jiang, Y.-G.3    Ye, H.4    Xue, X.5
  • 58
    • 84959226659 scopus 로고    scopus 로고
    • A discriminative cnn video representation for event detection
    • Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative cnn video representation for event detection. CVPR, 2015.
    • (2015) CVPR
    • Xu, Z.1    Yang, Y.2    Hauptmann, A.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.