-
2
-
-
84869753419
-
Canonical microcircuits for predictive coding
-
Andre M. Bastos, W. Martin Usrey, Rick A. Adams, George R. Mangun, Pascal Fries, and Karl J. Friston. Canonical microcircuits for predictive coding. Neuron, 2012.
-
(2012)
Neuron
-
-
Bastos, A.M.1
Martin Usrey, W.2
Adams, R.A.3
Mangun, G.R.4
Fries, P.5
Friston, K.J.6
-
3
-
-
85011805705
-
Scheduled sampling for sequence prediction with recurrent neural networks
-
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. CoRR, 2015.
-
(2015)
CoRR
-
-
Bengio, S.1
Vinyals, O.2
Jaitly, N.3
Shazeer, N.4
-
4
-
-
85070987141
-
How auto-encoders could provide credit assignment in deep networks via target propagation
-
Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target propagation. CoRR, 2014.
-
(2014)
CoRR
-
-
Bengio, Y.1
-
5
-
-
85071005210
-
-
Riccardo Biasini, George Hotz, Sam Khalandovsky, Eder Santana, and Niel van der Westhuizen. Comma.ai research, 2016. URL https://github.com/commaai/research.
-
(2016)
Comma.Ai Research
-
-
Biasini, R.1
Hotz, G.2
Khalandovsky, S.3
Santana, E.4
Van Der Westhuizen, N.5
-
6
-
-
85028075645
-
End to end learning for self-driving cars
-
Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. CoRR, 2016.
-
(2016)
CoRR
-
-
Bojarski, M.1
Testa, D.D.2
Dworakowski, D.3
Firner, B.4
Flepp, B.5
Goyal, P.6
Jackel, L.D.7
Monfort, M.8
Muller, U.9
Zhang, J.10
Zhang, X.11
Zhao, J.12
Zieba, K.13
-
8
-
-
85083949938
-
Deep predictive coding networks
-
Rakesh Chalasani and Jose C. Principe. Deep predictive coding networks. CoRR, 2013.
-
(2013)
CoRR
-
-
Chalasani, R.1
Principe, J.C.2
-
10
-
-
84872566721
-
Whatever next? Predictive brains, situated agents, and the future of cognitive science
-
Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 2013.
-
(2013)
Behavioral and Brain Sciences
-
-
Clark, A.1
-
12
-
-
78650073781
-
Expectation and surprise determine neural population responses in the ventral visual stream
-
Tobias Egner, Jim M. Monti, and Christopher Summerfield. Expectation and surprise determine neural population responses in the ventral visual stream. J Neurosci, 2010.
-
(2010)
J Neurosci
-
-
Egner, T.1
Monti, J.M.2
Summerfield, C.3
-
13
-
-
85007247760
-
Unsupervised learning for physical interaction through video prediction
-
Chelsea Finn, Ian J. Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through video prediction. CoRR, 2016.
-
(2016)
CoRR
-
-
Finn, C.1
Goodfellow, I.J.2
Levine, S.3
-
14
-
-
0000188120
-
Learning invariance from transformation sequences
-
Peter Földiák. Learning invariance from transformation sequences. Neural Computation, 1991.
-
(1991)
Neural Computation
-
-
Földiák, P.1
-
18
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS. 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
19
-
-
85070951991
-
Unsupervised learning of spatiotemporally coherent metrics
-
Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, and Yann LeCun. Unsupervised learning of spatiotemporally coherent metrics. CoRR, 2015a.
-
(2015)
CoRR
-
-
Goroshin, R.1
Bruna, J.2
Tompson, J.3
Eigen, D.4
LeCun, Y.5
-
20
-
-
85071004191
-
Learning to linearize under uncertainty
-
Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncertainty. CoRR, 2015b.
-
(2015)
CoRR
-
-
Goroshin, R.1
Mathieu, M.2
LeCun, Y.3
-
23
-
-
77953183471
-
What is the best multistage architecture for object recognition?
-
Kevin Jarrett, Koray Kavukcuoglu, MarcAurelio Ranzato, and Yann LeCun. What is the best multistage architecture for object recognition? In ICCV. 2009.
-
(2009)
ICCV
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
24
-
-
84926171282
-
Cerebral hierarchies: Predictive processing, precision and the pulvinar
-
Ryota Kanai, Yutaka Komura, Stewart Shipp, and Karl Friston. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos Trans R Soc Lond B Biol Sci, 2015.
-
(2015)
Philos Trans R Soc Lond B Biol Sci
-
-
Kanai, R.1
Komura, Y.2
Shipp, S.3
Friston, K.4
-
25
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
28
-
-
85050344803
-
Unsupervised learning of visual structure using predictive generative networks
-
William Lotter, Gabriel Kreiman, and David Cox. Unsupervised learning of visual structure using predictive generative networks. CoRR, 2015.
-
(2015)
CoRR
-
-
Lotter, W.1
Kreiman, G.2
Cox, D.3
-
29
-
-
85070970802
-
Semi-supervised tuning from temporal coherence
-
Davide Maltoni and Vincenzo Lomonaco. Semi-supervised tuning from temporal coherence. CoRR, 2015.
-
(2015)
CoRR
-
-
Maltoni, D.1
Lomonaco, V.2
-
30
-
-
85083952137
-
Deep multi-scale video prediction beyond mean square error
-
Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square error. ICLR, 2016.
-
(2016)
ICLR
-
-
Mathieu, M.1
Couprie, C.2
LeCun, Y.3
-
31
-
-
84937955008
-
Modeling deep temporal dependencies with recurrent”grammar cells
-
Vincent Michalski, Roland Memisevic, and Kishore Konda. Modeling deep temporal dependencies with recurrent”grammar cells”. In NIPS. 2014.
-
(2014)
NIPS
-
-
Michalski, V.1
Memisevic, R.2
Konda, K.3
-
32
-
-
71149084945
-
Deep learning from temporal coherence in video
-
Hossein Mohabi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in video. In ICML. 2009.
-
(2009)
ICML
-
-
Mohabi, H.1
Collobert, R.2
Weston, J.3
-
33
-
-
85070956636
-
Action-conditional video prediction using deep networks in atari games
-
Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-conditional video prediction using deep networks in atari games. CoRR, 2015.
-
(2015)
CoRR
-
-
Oh, J.1
Guo, X.2
Lee, H.3
Lewis, R.L.4
Singh, S.P.5
-
34
-
-
84925401874
-
Learning through time in the thalamocortical loops
-
Randall C. O'Reilly, Dean Wyatte, and John Rohrlich. Learning through time in the thalamocortical loops. CoRR, 2014.
-
(2014)
CoRR
-
-
O'Reilly, R.C.1
Wyatte, D.2
Rohrlich, J.3
-
36
-
-
85019178687
-
Spatio-temporal video autoencoder with differentiable memory
-
Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder with differentiable memory. CoRR, 2015.
-
(2015)
CoRR
-
-
Patraucean, V.1
Handa, A.2
Cipolla, R.3
-
37
-
-
85063587018
-
Deconstructing the ladder network architecture
-
Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron C. Courville, and Yoshua Bengio. Deconstructing the ladder network architecture. CoRR, 2015.
-
(2015)
CoRR
-
-
Pezeshki, M.1
Fan, L.2
Brakel, P.3
Courville, A.C.4
Bengio, Y.5
-
38
-
-
73449129720
-
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
-
Nicolas Pinto, David Doukhan, James J. DiCarlo, and David D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol, 2009.
-
(2009)
PLoS Comput Biol
-
-
Pinto, N.1
Doukhan, D.2
DiCarlo, J.J.3
Cox, D.D.4
-
39
-
-
85071013917
-
Video (language) modeling: A baseline for generative models of natural videos
-
Marc'Aurelio Ranzato, Arthur Szlam, Joan Bruna, Michaël Mathieu, Ronan Collobert, and Sumit Chopra. Video (language) modeling: a baseline for generative models of natural videos. CoRR, 2014.
-
(2014)
CoRR
-
-
Marc'Aurelio, R.1
Szlam, A.2
Bruna, J.3
Mathieu, M.4
Collobert, R.5
Chopra, S.6
-
40
-
-
0033360288
-
Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects
-
Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 1999.
-
(1999)
Nature Neuroscience
-
-
Rao, R.P.N.1
Ballard, D.H.2
-
41
-
-
74549192405
-
Predictive sequence learning in recurrent neocortical circuits
-
Rajesh P. N. Rao and T. J. Sejnowski. Predictive sequence learning in recurrent neocortical circuits. NIPS, 2000.
-
(2000)
NIPS
-
-
Rao, R.P.N.1
Sejnowski, T.J.2
-
42
-
-
85059086135
-
Semi-supervised learning with ladder network
-
Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-supervised learning with ladder network. CoRR, 2015.
-
(2015)
CoRR
-
-
Rasmus, A.1
Valpola, H.2
Honkala, M.3
Berglund, M.4
Raiko, T.5
-
43
-
-
85018506941
-
Learning a driving simulator
-
Eder Santana and George Hotz. Learning a driving simulator. CoRR, 2016.
-
(2016)
CoRR
-
-
Santana, E.1
Hotz, G.2
-
44
-
-
84893557505
-
On random weights and unsupervised feature learning
-
Andrew Saxe, Maneesh Bhand, Zhenghao Chen, Pang Wei Koh, Bipin Suresh, and Andrew Y. Ng. On random weights and unsupervised feature learning. In Workshop: Deep Learning and Unsupervised Feature Learning (NIPS). 2010.
-
(2010)
Workshop: Deep Learning and Unsupervised Feature Learning (NIPS)
-
-
Saxe, A.1
Bhand, M.2
Chen, Z.3
Koh, P.W.4
Suresh, B.5
Ng, A.Y.6
-
45
-
-
85021712519
-
Convolutional LSTM network: A machine learning approach for precipitation nowcasting
-
Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. CoRR, 2015.
-
(2015)
CoRR
-
-
Shi, X.1
Chen, Z.2
Wang, H.3
Yeung, D.-Y.4
Wong, W.-K.5
Woo, W.-C.6
-
46
-
-
85071011875
-
-
Singular Inversions, Inc. FaceGen. http://facegen.com.
-
FaceGen
-
-
-
47
-
-
85071013952
-
Unsupervised pixel-prediction
-
William R. Softky. Unsupervised pixel-prediction. NIPS, 1996.
-
(1996)
NIPS
-
-
Softky, W.R.1
-
48
-
-
83455164030
-
Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function
-
M. W. Spratling. Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Computation, 2012.
-
(2012)
Neural Computation
-
-
Spratling, M.W.1
-
49
-
-
84962900096
-
Unsupervised learning of video representations using lstms
-
Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representations using lstms. CoRR, 2015.
-
(2015)
CoRR
-
-
Srivastava, N.1
Mansimov, E.2
Salakhutdinov, R.3
-
50
-
-
33845194013
-
Predictive codes for forthcoming perception in the frontal cortex
-
Christopher Summerfield, Tobias Egner, Matthew Greene, Etienne Koechlin, Jennifer Mangels, and Joy Hirsch. Predictive codes for forthcoming perception in the frontal cortex. Science, 314, 2006.
-
(2006)
Science
, vol.314
-
-
Summerfield, C.1
Egner, T.2
Greene, M.3
Koechlin, E.4
Mangels, J.5
Hirsch, J.6
-
51
-
-
84911395416
-
DL-SFA: Deeply-learned slow feature analysis for action recognition
-
Lin Sun, Kui Jia, Tsung-Han Chan, Yuqiang Fang, Gang Wang, and Shuicheng Yan. Dl-sfa: Deeply-learned slow feature analysis for action recognition. CVPR, 2014.
-
(2014)
CVPR
-
-
Sun, L.1
Jia, K.2
Chan, T.-H.3
Fang, Y.4
Wang, G.5
Yan, S.6
-
52
-
-
85083950260
-
A note on the evaluation of generative models
-
Lucas Theis, Aaron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. ICLR, 2016.
-
(2016)
ICLR
-
-
Theis, L.1
Van Den Oord, A.2
Bethge, M.3
-
53
-
-
85045205900
-
From neural PCA to deep unsupervised learning
-
Harri Valpola. From neural pca to deep unsupervised learning. CoRR, 2015.
-
(2015)
CoRR
-
-
Valpola, H.1
-
55
-
-
85071006174
-
Unsupervised learning of visual representations using videos
-
Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. CoRR, 2015.
-
(2015)
CoRR
-
-
Wang, X.1
Gupta, A.2
-
58
-
-
85070962895
-
Learning invariance from transformation sequences
-
Laurenz Wiskott and Terrence J. Sejnowski. Learning invariance from transformation sequences. Neural Computation, 2002.
-
(2002)
Neural Computation
-
-
Wiskott, L.1
Sejnowski, T.J.2
-
59
-
-
85070940349
-
Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
-
Tianfan Xue, Jiajun Wu, Katherine L. Bouman, and William T. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. CoRR, 2016.
-
(2016)
CoRR
-
-
Xue, T.1
Wu, J.2
Bouman, K.L.3
Freeman, W.T.4
|