메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Deep predictive coding networks for video prediction and unsupervised learning

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; LEARNING ALGORITHMS; MACHINE LEARNING; NETWORK CODING; NETWORK LAYERS; NEURAL NETWORKS; OBJECT RECOGNITION; UNSUPERVISED LEARNING; VIDEO RECORDING; VIDEO SIGNAL PROCESSING;

EID: 85088229806     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (414)

References (59)
  • 3
    • 85011805705 scopus 로고    scopus 로고
    • Scheduled sampling for sequence prediction with recurrent neural networks
    • Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. CoRR, 2015.
    • (2015) CoRR
    • Bengio, S.1    Vinyals, O.2    Jaitly, N.3    Shazeer, N.4
  • 4
    • 85070987141 scopus 로고    scopus 로고
    • How auto-encoders could provide credit assignment in deep networks via target propagation
    • Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target propagation. CoRR, 2014.
    • (2014) CoRR
    • Bengio, Y.1
  • 8
    • 85083949938 scopus 로고    scopus 로고
    • Deep predictive coding networks
    • Rakesh Chalasani and Jose C. Principe. Deep predictive coding networks. CoRR, 2013.
    • (2013) CoRR
    • Chalasani, R.1    Principe, J.C.2
  • 10
    • 84872566721 scopus 로고    scopus 로고
    • Whatever next? Predictive brains, situated agents, and the future of cognitive science
    • Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 2013.
    • (2013) Behavioral and Brain Sciences
    • Clark, A.1
  • 12
    • 78650073781 scopus 로고    scopus 로고
    • Expectation and surprise determine neural population responses in the ventral visual stream
    • Tobias Egner, Jim M. Monti, and Christopher Summerfield. Expectation and surprise determine neural population responses in the ventral visual stream. J Neurosci, 2010.
    • (2010) J Neurosci
    • Egner, T.1    Monti, J.M.2    Summerfield, C.3
  • 13
    • 85007247760 scopus 로고    scopus 로고
    • Unsupervised learning for physical interaction through video prediction
    • Chelsea Finn, Ian J. Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through video prediction. CoRR, 2016.
    • (2016) CoRR
    • Finn, C.1    Goodfellow, I.J.2    Levine, S.3
  • 14
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Peter Földiák. Learning invariance from transformation sequences. Neural Computation, 1991.
    • (1991) Neural Computation
    • Földiák, P.1
  • 19
    • 85070951991 scopus 로고    scopus 로고
    • Unsupervised learning of spatiotemporally coherent metrics
    • Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, and Yann LeCun. Unsupervised learning of spatiotemporally coherent metrics. CoRR, 2015a.
    • (2015) CoRR
    • Goroshin, R.1    Bruna, J.2    Tompson, J.3    Eigen, D.4    LeCun, Y.5
  • 20
    • 85071004191 scopus 로고    scopus 로고
    • Learning to linearize under uncertainty
    • Ross Goroshin, Michaël Mathieu, and Yann LeCun. Learning to linearize under uncertainty. CoRR, 2015b.
    • (2015) CoRR
    • Goroshin, R.1    Mathieu, M.2    LeCun, Y.3
  • 23
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multistage architecture for object recognition?
    • Kevin Jarrett, Koray Kavukcuoglu, MarcAurelio Ranzato, and Yann LeCun. What is the best multistage architecture for object recognition? In ICCV. 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 25
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014.
    • (2014) CoRR
    • Kingma, D.P.1    Ba, J.2
  • 28
    • 85050344803 scopus 로고    scopus 로고
    • Unsupervised learning of visual structure using predictive generative networks
    • William Lotter, Gabriel Kreiman, and David Cox. Unsupervised learning of visual structure using predictive generative networks. CoRR, 2015.
    • (2015) CoRR
    • Lotter, W.1    Kreiman, G.2    Cox, D.3
  • 29
    • 85070970802 scopus 로고    scopus 로고
    • Semi-supervised tuning from temporal coherence
    • Davide Maltoni and Vincenzo Lomonaco. Semi-supervised tuning from temporal coherence. CoRR, 2015.
    • (2015) CoRR
    • Maltoni, D.1    Lomonaco, V.2
  • 30
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square error. ICLR, 2016.
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 31
    • 84937955008 scopus 로고    scopus 로고
    • Modeling deep temporal dependencies with recurrent”grammar cells
    • Vincent Michalski, Roland Memisevic, and Kishore Konda. Modeling deep temporal dependencies with recurrent”grammar cells”. In NIPS. 2014.
    • (2014) NIPS
    • Michalski, V.1    Memisevic, R.2    Konda, K.3
  • 32
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • Hossein Mohabi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in video. In ICML. 2009.
    • (2009) ICML
    • Mohabi, H.1    Collobert, R.2    Weston, J.3
  • 33
    • 85070956636 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in atari games
    • Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-conditional video prediction using deep networks in atari games. CoRR, 2015.
    • (2015) CoRR
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.L.4    Singh, S.P.5
  • 34
    • 84925401874 scopus 로고    scopus 로고
    • Learning through time in the thalamocortical loops
    • Randall C. O'Reilly, Dean Wyatte, and John Rohrlich. Learning through time in the thalamocortical loops. CoRR, 2014.
    • (2014) CoRR
    • O'Reilly, R.C.1    Wyatte, D.2    Rohrlich, J.3
  • 36
    • 85019178687 scopus 로고    scopus 로고
    • Spatio-temporal video autoencoder with differentiable memory
    • Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder with differentiable memory. CoRR, 2015.
    • (2015) CoRR
    • Patraucean, V.1    Handa, A.2    Cipolla, R.3
  • 38
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • Nicolas Pinto, David Doukhan, James J. DiCarlo, and David D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol, 2009.
    • (2009) PLoS Comput Biol
    • Pinto, N.1    Doukhan, D.2    DiCarlo, J.J.3    Cox, D.D.4
  • 39
    • 85071013917 scopus 로고    scopus 로고
    • Video (language) modeling: A baseline for generative models of natural videos
    • Marc'Aurelio Ranzato, Arthur Szlam, Joan Bruna, Michaël Mathieu, Ronan Collobert, and Sumit Chopra. Video (language) modeling: a baseline for generative models of natural videos. CoRR, 2014.
    • (2014) CoRR
    • Marc'Aurelio, R.1    Szlam, A.2    Bruna, J.3    Mathieu, M.4    Collobert, R.5    Chopra, S.6
  • 40
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects
    • Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 1999.
    • (1999) Nature Neuroscience
    • Rao, R.P.N.1    Ballard, D.H.2
  • 41
    • 74549192405 scopus 로고    scopus 로고
    • Predictive sequence learning in recurrent neocortical circuits
    • Rajesh P. N. Rao and T. J. Sejnowski. Predictive sequence learning in recurrent neocortical circuits. NIPS, 2000.
    • (2000) NIPS
    • Rao, R.P.N.1    Sejnowski, T.J.2
  • 43
    • 85018506941 scopus 로고    scopus 로고
    • Learning a driving simulator
    • Eder Santana and George Hotz. Learning a driving simulator. CoRR, 2016.
    • (2016) CoRR
    • Santana, E.1    Hotz, G.2
  • 45
    • 85021712519 scopus 로고    scopus 로고
    • Convolutional LSTM network: A machine learning approach for precipitation nowcasting
    • Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. CoRR, 2015.
    • (2015) CoRR
    • Shi, X.1    Chen, Z.2    Wang, H.3    Yeung, D.-Y.4    Wong, W.-K.5    Woo, W.-C.6
  • 46
    • 85071011875 scopus 로고    scopus 로고
    • Singular Inversions, Inc. FaceGen. http://facegen.com.
    • FaceGen
  • 47
    • 85071013952 scopus 로고    scopus 로고
    • Unsupervised pixel-prediction
    • William R. Softky. Unsupervised pixel-prediction. NIPS, 1996.
    • (1996) NIPS
    • Softky, W.R.1
  • 48
    • 83455164030 scopus 로고    scopus 로고
    • Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function
    • M. W. Spratling. Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Computation, 2012.
    • (2012) Neural Computation
    • Spratling, M.W.1
  • 49
    • 84962900096 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using lstms
    • Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representations using lstms. CoRR, 2015.
    • (2015) CoRR
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 50
  • 51
    • 84911395416 scopus 로고    scopus 로고
    • DL-SFA: Deeply-learned slow feature analysis for action recognition
    • Lin Sun, Kui Jia, Tsung-Han Chan, Yuqiang Fang, Gang Wang, and Shuicheng Yan. Dl-sfa: Deeply-learned slow feature analysis for action recognition. CVPR, 2014.
    • (2014) CVPR
    • Sun, L.1    Jia, K.2    Chan, T.-H.3    Fang, Y.4    Wang, G.5    Yan, S.6
  • 52
    • 85083950260 scopus 로고    scopus 로고
    • A note on the evaluation of generative models
    • Lucas Theis, Aaron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. ICLR, 2016.
    • (2016) ICLR
    • Theis, L.1    Van Den Oord, A.2    Bethge, M.3
  • 53
    • 85045205900 scopus 로고    scopus 로고
    • From neural PCA to deep unsupervised learning
    • Harri Valpola. From neural pca to deep unsupervised learning. CoRR, 2015.
    • (2015) CoRR
    • Valpola, H.1
  • 55
    • 85071006174 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. CoRR, 2015.
    • (2015) CoRR
    • Wang, X.1    Gupta, A.2
  • 57
    • 85071051620 scopus 로고    scopus 로고
    • Understanding visual concepts with continuation learning
    • William F. Whitney, Michael Chang, Tejas D. Kulkarni, and Joshua B. Tenenbaum. Understanding visual concepts with continuation learning. CoRR, 2016.
    • (2016) CoRR
    • Whitney, W.F.1    Chang, M.2    Kulkarni, T.D.3    Tenenbaum, J.B.4
  • 58
    • 85070962895 scopus 로고    scopus 로고
    • Learning invariance from transformation sequences
    • Laurenz Wiskott and Terrence J. Sejnowski. Learning invariance from transformation sequences. Neural Computation, 2002.
    • (2002) Neural Computation
    • Wiskott, L.1    Sejnowski, T.J.2
  • 59
    • 85070940349 scopus 로고    scopus 로고
    • Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
    • Tianfan Xue, Jiajun Wu, Katherine L. Bouman, and William T. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. CoRR, 2016.
    • (2016) CoRR
    • Xue, T.1    Wu, J.2    Bouman, K.L.3    Freeman, W.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.