-
2
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in nd images
-
Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In ICCV, 2001.
-
(2001)
ICCV
-
-
Boykov, Y.1
Jolly, M.-P.2
-
3
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI, 26(9):1124-1137, 2004.
-
(2004)
PAMI
, vol.26
, Issue.9
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
4
-
-
84911455504
-
Beat the mturkers: Automatic image labeling from weak 3d supervision
-
L.-C. Chen, S. Fidler, A. Yuille, and R. Urtasun. Beat the mturkers: Automatic image labeling from weak 3d supervision. In CVPR, 2014.
-
(2014)
CVPR
-
-
Chen, L.-C.1
Fidler, S.2
Yuille, A.3
Urtasun, R.4
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
6
-
-
84986255616
-
The cityscapes dataset for semantic urban scene understanding
-
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.
-
(2016)
CVPR
-
-
Cordts, M.1
Omran, M.2
Ramos, S.3
Rehfeld, T.4
Enzweiler, M.5
Benenson, R.6
Franke, U.7
Roth, S.8
Schiele, B.9
-
7
-
-
85044305750
-
Towards large-scale city reconstruction from satellites
-
L. Duan and F. Lafarge. Towards large-scale city reconstruction from satellites. In ECCV, 2016.
-
(2016)
ECCV
-
-
Duan, L.1
Lafarge, F.2
-
9
-
-
84866704163
-
Are we ready for Autonomous Driving? the KITTI Vision Benchmark Suite
-
A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In CVPR, 2012.
-
(2012)
CVPR
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
10
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
84986333999
-
Active image segmentation propagation
-
S. D. Jain and K. Grauman. Active image segmentation propagation. In CVPR, 2016.
-
(2016)
CVPR
-
-
Jain, S.D.1
Grauman, K.2
-
15
-
-
84986265730
-
Scribblesup: Scribble-supervised convolutional networks for semantic segmentation
-
D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In CVPR, 2016.
-
(2016)
CVPR
-
-
Lin, D.1
Dai, J.2
Jia, J.3
He, K.4
Sun, J.5
-
16
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
18
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. CVPR, 2014.
-
(2014)
CVPR
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
19
-
-
84973866762
-
Video segmentation with just a few strokes
-
N. S. Nagaraja, F. R. Schmidt, and T. Brox. Video segmentation with just a few strokes. In ICCV, 2015.
-
(2015)
ICCV
-
-
Nagaraja, N.S.1
Schmidt, F.R.2
Brox, T.3
-
20
-
-
84965114050
-
Learning to segment object candidates
-
P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to segment object candidates. In NIPS, pages 1990-1998, 2015.
-
(2015)
NIPS
, pp. 1990-1998
-
-
Pinheiro, P.O.1
Collobert, R.2
Dollar, P.3
-
23
-
-
85044104764
-
-
M. Rajchl, M. C. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach, W. Bai, M. Damodaram, M. A. Rutherford, J. V. Hajnal, B. Kainz, and D. Rueckert. Deepcut: Object segmentation from bounding box annotations using convolutional neural networks. In arXiv:1605.07866, 2016.
-
(2016)
Deepcut: Object Segmentation from Bounding Box Annotations Using Convolutional Neural Networks
-
-
Rajchl, M.1
Lee, M.C.2
Oktay, O.3
Kamnitsas, K.4
Passerat-Palmbach, J.5
Bai, W.6
Damodaram, M.7
Rutherford, M.A.8
Hajnal, J.V.9
Kainz, B.10
Rueckert, D.11
-
25
-
-
84877632511
-
Grabcut: Interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In SIGGRAPH, 2004.
-
(2004)
SIGGRAPH
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
26
-
-
39749186006
-
Labelme: A database and web-based tool for image annotation
-
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database and web-based tool for image annotation. International journal of computer vision, 77(1-3):157-173, 2008.
-
(2008)
International Journal of Computer Vision
, vol.77
, Issue.1-3
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
28
-
-
85026932901
-
Free-shape polygonal object localization
-
X. Sun, C. M. Christoudias, and P. Fua. Free-shape polygonal object localization. In ECCV, 2014.
-
(2014)
ECCV
-
-
Sun, X.1
Christoudias, C.M.2
Fua, P.3
-
30
-
-
84965121965
-
Convolutional lstm network: A machine learning approach for precipitation nowcasting
-
S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In NIPS, pages 802-810, 2015.
-
(2015)
NIPS
, pp. 802-810
-
-
Xingjian, S.1
Chen, Z.2
Wang, H.3
Yeung, D.-Y.4
Wong, W.-K.5
Woo, W.-C.6
-
31
-
-
84911404516
-
Tell me what you see and i will show you where it is
-
J. Xu, A. Schwing, and R. Urtasun. Tell me what you see and i will show you where it is. In CVPR, 2014.
-
(2014)
CVPR
-
-
Xu, J.1
Schwing, A.2
Urtasun, R.3
-
34
-
-
84986269578
-
Instance-level segmentation for autonomous driving with deep densely connected mrfs
-
Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmentation for autonomous driving with deep densely connected mrfs. In CVPR, 2016.
-
(2016)
CVPR
-
-
Zhang, Z.1
Fidler, S.2
Urtasun, R.3
-
35
-
-
84866684876
-
Super-edge grouping for object localization by combining appearance and shape information
-
Z. Zhang, S. Fidler, J. W. Waggoner, Y. Cao, J. M. Siskind, S. Dickinson, and S. Wang. Super-edge grouping for object localization by combining appearance and shape information. In CVPR, 2012.
-
(2012)
CVPR
-
-
Zhang, Z.1
Fidler, S.2
Waggoner, J.W.3
Cao, Y.4
Siskind, J.M.5
Dickinson, S.6
Wang, S.7
-
36
-
-
84973891613
-
Monocular object instance segmentation and depth ordering with cnns
-
Z. Zhang, A. Schwing, S. Fidler, and R. Urtasun. Monocular object instance segmentation and depth ordering with cnns. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zhang, Z.1
Schwing, A.2
Fidler, S.3
Urtasun, R.4
-
37
-
-
85020062798
-
-
B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Semantic understanding of scenes through ade20k dataset. In arXiv:1608.05442, 2016.
-
(2016)
Semantic Understanding of Scenes Through ade20k Dataset
-
-
Zhou, B.1
Zhao, H.2
Puig, X.3
Fidler, S.4
Barriuso, A.5
Torralba, A.6
|