메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3159-3167

ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; PIXELS; SEMANTIC WEB; SEMANTICS;

EID: 84986265730     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.344     Document Type: Conference Paper
Times cited : (1252)

References (31)
  • 1
    • 84880793590 scopus 로고    scopus 로고
    • Opensurfaces: A richly annotated catalog of surface appearance
    • S. Bell, P. Upchurch, N. Snavely, and K. Bala. Opensurfaces: A richly annotated catalog of surface appearance. In SIGGRAPH, 2013.
    • (2013) SIGGRAPH
    • Bell, S.1    Upchurch, P.2    Snavely, N.3    Bala, K.4
  • 2
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. TPAMI, 2004.
    • (2004) TPAMI
    • Boykov, Y.1    Kolmogorov, V.2
  • 3
    • 0033283778 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. In ICCV, 1999.
    • (1999) ICCV
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 4
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in nd images
    • Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In ICCV, 2001.
    • (2001) ICCV
    • Boykov, Y.Y.1    Jolly, M.-P.2
  • 5
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 7
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 8
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 11
    • 33846207510 scopus 로고    scopus 로고
    • Random walks for image segmentation
    • L. Grady. Random walks for image segmentation. PAMI, 2006.
    • (2006) PAMI
    • Grady, L.1
  • 13
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, P. H. Torr, et al. Robust higher order potentials for enforcing label consistency. IJCV, pages 302-324, 2009.
    • (2009) IJCV , pp. 302-324
    • Kohli, P.1    Torr, P.H.2
  • 14
    • 84897465786 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2012.
    • (2012) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 15
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.3
  • 16
    • 33845571783 scopus 로고    scopus 로고
    • A closed form solution to natural image matting
    • A. Levin, D. Lischinski, and Y. Weiss. A closed form solution to natural image matting. CVPR, 2006.
    • (2006) CVPR
    • Levin, A.1    Lischinski, D.2    Weiss, Y.3
  • 19
    • 70349668761 scopus 로고    scopus 로고
    • Paint selection
    • ACM
    • J. Liu, J. Sun, and H.-Y. Shum. Paint selection. In SIGGRAPH, volume 28, page 69. ACM, 2009.
    • (2009) SIGGRAPH , vol.28 , pp. 69
    • Liu, J.1    Sun, J.2    Shum, H.-Y.3
  • 20
    • 84973860883 scopus 로고    scopus 로고
    • Semantic image segmentation via deep parsing network
    • Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.
    • (2015) ICCV
    • Liu, Z.1    Li, X.2    Luo, P.3    Loy, C.C.4    Tang, X.5
  • 21
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 23
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 24
    • 84965124068 scopus 로고    scopus 로고
    • Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
    • G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4
  • 29
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation. In ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 30
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.