메뉴 건너뛰기




Volumn 115, Issue 3, 2018, Pages 729-738

Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W

Author keywords

acetate; glyoxylate shunt; itaconic acid; metabolic engineering; synthetic biology

Indexed keywords

CARBON; COST EFFECTIVENESS; ESCHERICHIA COLI;

EID: 85037974372     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.26508     Document Type: Article
Times cited : (89)

References (51)
  • 1
    • 0035088098 scopus 로고    scopus 로고
    • Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response
    • Arnold, CN, Elhanon, JMC, Lee, A, Leonhart, R, & Siegele, DA. (2001). Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. Journal of Bacteriology, 183, 2178–2186.
    • (2001) Journal of Bacteriology , vol.183 , pp. 2178-2186
    • Arnold, C.N.1    Elhanon, J.M.C.2    Lee, A.3    Leonhart, R.4    Siegele, D.A.5
  • 2
    • 82155175630 scopus 로고    scopus 로고
    • CAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli
    • Castaño-cerezo, S, Bernal, V, Blanco-catalá, J, Iborra, JL, & Cánovas, M. (2011). CAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Molecular Microbiology, 82, 1110–1128.
    • (2011) Molecular Microbiology , vol.82 , pp. 1110-1128
    • Castaño-cerezo, S.1    Bernal, V.2    Blanco-catalá, J.3    Iborra, J.L.4    Cánovas, M.5
  • 3
    • 85017454800 scopus 로고    scopus 로고
    • Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli
    • Chang, P, Chen, GS, Chu, H-Y., Lu, KW, & Shen, CR. (2017). Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. Journal of Biotechnology, 249, 73–81.
    • (2017) Journal of Biotechnology , vol.249 , pp. 73-81
    • Chang, P.1    Chen, G.S.2    Chu, H.-Y.3    Lu, K.W.4    Shen, C.R.5
  • 4
    • 0030720836 scopus 로고    scopus 로고
    • Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation
    • Choi, J-Il, & Lee, SY (1997). Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17, 335–342.
    • (1997) Bioprocess Engineering , vol.17 , pp. 335-342
    • Choi, J.-I.1    Lee, S.Y.2
  • 5
    • 84885035726 scopus 로고    scopus 로고
    • Improving acetate tolerance of Escherichia coli by rewiring Its global regulator cAMP receptor protein (CRP)
    • Chong, H, Yeow, J, Wang, I, Song, H, & Jiang, R. (2013). Improving acetate tolerance of Escherichia coli by rewiring Its global regulator cAMP receptor protein (CRP). PLoS ONE, 8, 1–10.
    • (2013) PLoS ONE , vol.8 , pp. 1-10
    • Chong, H.1    Yeow, J.2    Wang, I.3    Song, H.4    Jiang, R.5
  • 7
    • 56649114274 scopus 로고    scopus 로고
    • A one pot, one step, precision cloning method with high throughput capability
    • Engler, C, Kandzia, R, & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS ONE, 3, e3647.
    • (2008) PLoS ONE , vol.3
    • Engler, C.1    Kandzia, R.2    Marillonnet, S.3
  • 8
    • 80052490945 scopus 로고    scopus 로고
    • Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus
    • Fei, Q, Chang, HN, Shang, L, & Choi, JDR. (2011). Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnology and Bioprocess Engineering, 16, 482–487.
    • (2011) Biotechnology and Bioprocess Engineering , vol.16 , pp. 482-487
    • Fei, Q.1    Chang, H.N.2    Shang, L.3    Choi, J.D.R.4
  • 10
    • 0023001893 scopus 로고
    • Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli
    • Fox, DK, & Roseman, S. (1986). Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. The Journal of Biological Chemistry, 261, 13487–13497.
    • (1986) The Journal of Biological Chemistry , vol.261 , pp. 13487-13497
    • Fox, D.K.1    Roseman, S.2
  • 11
    • 84974657997 scopus 로고    scopus 로고
    • Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli
    • Harder, B-J., Bettenbrock, K, & Klamt, S. (2016). Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering, 38, 29–37.
    • (2016) Metabolic Engineering , vol.38 , pp. 29-37
    • Harder, B.-J.1    Bettenbrock, K.2    Klamt, S.3
  • 12
    • 84916625236 scopus 로고    scopus 로고
    • Influence of the pH on the itaconic acid production with Aspergillus terreus
    • Hevekerl, A, Kuenz, A, & Vorlop, K-D (2014). Influence of the pH on the itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 98, 6983–6989.
    • (2014) Applied Microbiology and Biotechnology , vol.98 , pp. 6983-6989
    • Hevekerl, A.1    Kuenz, A.2    Vorlop, K.-D.3
  • 13
    • 0014991329 scopus 로고
    • Regulation of isocitrate dehydrogenase activity in Escherichia colion adaption to acetate
    • Holms, B. (1971). Regulation of isocitrate dehydrogenase activity in Escherichia colion adaption to acetate. Journal of General Microbiology, 65, 57–68.
    • (1971) Journal of General Microbiology , vol.65 , pp. 57-68
    • Holms, B.1
  • 15
    • 84958212325 scopus 로고    scopus 로고
    • Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5′-coding region variant of the cadA gene
    • Jeon, HG, Cheong, DE, Han, Y, Song, JJ, & Choi, JH. (2016). Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5′-coding region variant of the cadA gene. Biotechnology and Bioengineering, 113, 1504–1510.
    • (2016) Biotechnology and Bioengineering , vol.113 , pp. 1504-1510
    • Jeon, H.G.1    Cheong, D.E.2    Han, Y.3    Song, J.J.4    Choi, J.H.5
  • 19
    • 84925933289 scopus 로고    scopus 로고
    • Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions
    • Ko, Y, Ashok, S, Ainala, SK, Sankaranarayanan, M, Chun, AY, Jung, GY, & Park, S. (2014). Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnology Journal, 9, 1526–1535.
    • (2014) Biotechnology Journal , vol.9 , pp. 1526-1535
    • Ko, Y.1    Ashok, S.2    Ainala, S.K.3    Sankaranarayanan, M.4    Chun, A.Y.5    Jung, G.Y.6    Park, S.7
  • 20
    • 84979266046 scopus 로고    scopus 로고
    • Microbial production of ethanol from acetate by engineered Ralstonia eutropha
    • Lee, H, Jeon, B, & Oh, M. (2016). Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnology and Bioprocess Engineering, 21, 402–407.
    • (2016) Biotechnology and Bioprocess Engineering , vol.21 , pp. 402-407
    • Lee, H.1    Jeon, B.2    Oh, M.3
  • 21
    • 84885900438 scopus 로고    scopus 로고
    • Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger
    • Li, A, Pfelzer, N, Zuijderwijk, R, Brickwedde, A, Van Zeijl, C, & Punt, P. (2013). Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Applied Microbiology and Biotechnology, 97, 3901–3911.
    • (2013) Applied Microbiology and Biotechnology , vol.97 , pp. 3901-3911
    • Li, A.1    Pfelzer, N.2    Zuijderwijk, R.3    Brickwedde, A.4    Van Zeijl, C.5    Punt, P.6
  • 22
    • 85016808162 scopus 로고    scopus 로고
    • Production of succinate from acetate by metabolically engineered Escherichia coli
    • Li, Y, Huang, B, Wu, H, Li, Z, Ye, Q, & Zhang, Y-HP. (2016). Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synthetic Biology, 5, 1299–1307.
    • (2016) ACS Synthetic Biology , vol.5 , pp. 1299-1307
    • Li, Y.1    Huang, B.2    Wu, H.3    Li, Z.4    Ye, Q.5    Zhang, Y.-H.P.6
  • 23
    • 85041077576 scopus 로고    scopus 로고
    • #x0026;,). enetically modified microorganisms for producing itaconic acid with high yields. U. S. Patent 8,143,036.
    • Liao JC, & Chang P-C., (2012). enetically modified microorganisms for producing itaconic acid with high yields. U. S. Patent No. 8,143,036.
    • (2012)
    • Liao, J.C.1    Chang, P.-C.2
  • 24
    • 56949084194 scopus 로고    scopus 로고
    • Lagging strand-biased Initiation of Red recombination by linear double-stranded DNAs
    • Lim, SI, Min, BE, & Jung, GY. (2008). Lagging strand-biased Initiation of Red recombination by linear double-stranded DNAs. Journal of Molecular Biology, 384, 1098–1105.
    • (2008) Journal of Molecular Biology , vol.384 , pp. 1098-1105
    • Lim, S.I.1    Min, B.E.2    Jung, G.Y.3
  • 25
    • 84884927626 scopus 로고    scopus 로고
    • Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli
    • Lim, J, Seo, S, Kim, S, & Jung, G. (2013). Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 20, 56–62.
    • (2013) Metabolic Engineering , vol.20 , pp. 56-62
    • Lim, J.1    Seo, S.2    Kim, S.3    Jung, G.4
  • 26
    • 85017356007 scopus 로고    scopus 로고
    • Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli
    • Lim, HG, Noh, MH, Jeong, JH, Park, S, & Jung, GY. (2016). Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synthetic Biology, 5(11), 1247–1255.
    • (2016) ACS Synthetic Biology , vol.5 , Issue.11 , pp. 1247-1255
    • Lim, H.G.1    Noh, M.H.2    Jeong, J.H.3    Park, S.4    Jung, G.Y.5
  • 29
    • 38349002470 scopus 로고    scopus 로고
    • Genetic engineering of filamentous fungi − Progress, obstacles and future trends
    • Meyer, V. (2008). Genetic engineering of filamentous fungi − Progress, obstacles and future trends. Biotechnology Advances, 26, 177–185.
    • (2008) Biotechnology Advances , vol.26 , pp. 177-185
    • Meyer, V.1
  • 31
    • 84901445975 scopus 로고    scopus 로고
    • Facile recovery of acetic acid from waste acids of electronic industry via a partial neutralization pretreatment (PNP)—Distillation strategy
    • Ni, C, Wu, X, Dan, J, & Du, D. (2014). Facile recovery of acetic acid from waste acids of electronic industry via a partial neutralization pretreatment (PNP)—Distillation strategy. Separation and Purification Technology, 132, 23–26.
    • (2014) Separation and Purification Technology , vol.132 , pp. 23-26
    • Ni, C.1    Wu, X.2    Dan, J.3    Du, D.4
  • 32
    • 85025583264 scopus 로고    scopus 로고
    • Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli
    • Noh, MH, Lim, HG, Park, S, Seo, SW, & Jung, GY. (2017). Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metabolic Engineering, 43, 1–8.
    • (2017) Metabolic Engineering , vol.43 , pp. 1-8
    • Noh, M.H.1    Lim, H.G.2    Park, S.3    Seo, S.W.4    Jung, G.Y.5
  • 34
    • 84942086056 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for the production of itaconate
    • Otten, A, Brocker, M, & Bott, M. (2015). Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metabolic Engineering, 30, 156–165.
    • (2015) Metabolic Engineering , vol.30 , pp. 156-165
    • Otten, A.1    Brocker, M.2    Bott, M.3
  • 36
    • 0036061941 scopus 로고    scopus 로고
    • Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity
    • Roe, AJ, O'Byrne, C, McLaggan, D, & Booth, IR. (2002). Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity. Microbiology, 148, 2215–2222.
    • (2002) Microbiology , vol.148 , pp. 2215-2222
    • Roe, A.J.1    O'Byrne, C.2    McLaggan, D.3    Booth, I.R.4
  • 38
    • 84870851210 scopus 로고    scopus 로고
    • Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency
    • Seo, SW, Yang, JS, Kim, I, Yang, J, Min, BE, Kim, S, & Jung, GY. (2013). Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metabolic Engineering, 15, 67–74.
    • (2013) Metabolic Engineering , vol.15 , pp. 67-74
    • Seo, S.W.1    Yang, J.S.2    Kim, I.3    Yang, J.4    Min, B.E.5    Kim, S.6    Jung, G.Y.7
  • 39
    • 84897081611 scopus 로고    scopus 로고
    • Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii
    • Straub, M, Demler, M, Weuster-botz, D, & Dürre, P. (2014). Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. Journal of Biotechnology, 178, 67–72.
    • (2014) Journal of Biotechnology , vol.178 , pp. 67-72
    • Straub, M.1    Demler, M.2    Weuster-botz, D.3    Dürre, P.4
  • 40
    • 0025355399 scopus 로고
    • Regulation of the glyoxylate bypass operon: Cloning and characterization of iclR
    • Sunnarborg, A, Klumpp, D, Chung, T, & LaPorte, DC. (1990). Regulation of the glyoxylate bypass operon: Cloning and characterization of iclR. Journal of Bacteriology, 172, 2642–2649.
    • (1990) Journal of Bacteriology , vol.172 , pp. 2642-2649
    • Sunnarborg, A.1    Klumpp, D.2    Chung, T.3    LaPorte, D.C.4
  • 42
    • 78649511651 scopus 로고    scopus 로고
    • Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase
    • Valgepea, K, Adamberg, K, Nahku, R, Lahtvee, P, Arike, L, & Vilu, R. (2010). Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Systems Biology, 4, 166.
    • (2010) BMC Systems Biology , vol.4 , pp. 166
    • Valgepea, K.1    Adamberg, K.2    Nahku, R.3    Lahtvee, P.4    Arike, L.5    Vilu, R.6
  • 44
    • 84856224805 scopus 로고    scopus 로고
    • Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21(DE3)
    • Waegeman, H, Maertens, J, Beauprez, J, De Mey, M, & Soetaerte, W. (2012). Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21(DE3). Biotechnology Letters, 21, 329–337.
    • (2012) Biotechnology Letters , vol.21 , pp. 329-337
    • Waegeman, H.1    Maertens, J.2    Beauprez, J.3    De Mey, M.4    Soetaerte, W.5
  • 46
    • 0034115397 scopus 로고    scopus 로고
    • Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose
    • Wendisch, VF, Graaf a De, A, Sahm, H, & Eikmanns, BJ. (2000). Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology, 182, 3088–3096.
    • (2000) Journal of Bacteriology , vol.182 , pp. 3088-3096
    • Wendisch, V.F.1    Graaf a De, A.2    Sahm, H.3    Eikmanns, B.J.4
  • 50
    • 84965008220 scopus 로고    scopus 로고
    • Engineering Escherichia coli to convert acetic acid to β-caryophyllene
    • Yang, J, & Nie, Q. (2016). Engineering Escherichia coli to convert acetic acid to β-caryophyllene. Microbial Cell Factories, 15, 74.
    • (2016) Microbial Cell Factories , vol.15 , pp. 74
    • Yang, J.1    Nie, Q.2
  • 51
    • 85006132386 scopus 로고    scopus 로고
    • Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli
    • Yang Z, Gao X, Xie H, Wang F, Ren Y, & Wei D. 2016. Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli. Biotechnology and Bioengineering 114:1–20.
    • (2016) Biotechnology and Bioengineering , vol.114 , pp. 1-20
    • Yang, Z.1    Gao, X.2    Xie, H.3    Wang, F.4    Ren, Y.5    Wei, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.