메뉴 건너뛰기




Volumn 48, Issue 6, 2017, Pages 1710-1729

Wavelet analysis-artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an Arid Inland River Basin, northwestern China

Author keywords

Arid environment; Artificial neural network; Discrete wavelet transforms; Forecasting; Groundwater level

Indexed keywords

DISCRETE WAVELET TRANSFORMS; FORECASTING; NEURAL NETWORKS; SIGNAL RECONSTRUCTION; WATERSHEDS; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 85037042999     PISSN: 19989563     EISSN: 22247955     Source Type: Journal    
DOI: 10.2166/nh.2016.396     Document Type: Article
Times cited : (43)

References (40)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407(1-4), 28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 2
    • 81755176145 scopus 로고    scopus 로고
    • Vegetation controls on variably saturated processes between surface water and groundwater and their impact on the state of connection
    • Banks, E. W., Brunner, P. & Simmons, C. T. 2011 Vegetation controls on variably saturated processes between surface water and groundwater and their impact on the state of connection. Water Resour. Res. 47(11), W11517. doi:10. 1029/2011WR010544.
    • (2011) Water Resour. Res. , vol.47 , Issue.11 , pp. W11517
    • Banks, E.W.1    Brunner, P.2    Simmons, C.T.3
  • 3
    • 84906266443 scopus 로고    scopus 로고
    • Simulation of aquifer-peatland-river interactions under climate change
    • Bourgault, M. A., Larocque, M. & Roy, M. 2014 Simulation of aquifer-peatland-river interactions under climate change. Hydrol. Res. 45(3), 425-440.
    • (2014) Hydrol. Res. , vol.45 , Issue.3 , pp. 425-440
    • Bourgault, M.A.1    Larocque, M.2    Roy, M.3
  • 4
    • 61349096637 scopus 로고    scopus 로고
    • Hydrogeologic controls on disconnection between surface water and groundwater
    • Brunner, P., Cook, P. G. & Simmons, C. T. 2009 Hydrogeologic controls on disconnection between surface water and groundwater. Water Resour. Res. 45(1), W01422. doi:10. 1029/2008WR006953.
    • (2009) Water Resour. Res. , vol.45 , Issue.1 , pp. W01422
    • Brunner, P.1    Cook, P.G.2    Simmons, C.T.3
  • 5
    • 84971671515 scopus 로고    scopus 로고
    • Spatial variations of river-groundwater interactions from upstream mountain to midstream oasis and downstream desert in Heihe River basin, China
    • Cai, Y., Huang, W., Teng, F., Wang, B., Ni, K. & Zheng, C. 2016 Spatial variations of river-groundwater interactions from upstream mountain to midstream oasis and downstream desert in Heihe River basin, China. Hydrol. Res. 47(2), 501-520.
    • (2016) Hydrol. Res. , vol.47 , Issue.2 , pp. 501-520
    • Cai, Y.1    Huang, W.2    Teng, F.3    Wang, B.4    Ni, K.5    Zheng, C.6
  • 6
    • 84942795851 scopus 로고    scopus 로고
    • Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model
    • Chang, J., Wang, G. & Mao, T. 2015 Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. J. Hydrol. 529, 1211-1220.
    • (2015) J. Hydrol. , vol.529 , pp. 1211-1220
    • Chang, J.1    Wang, G.2    Mao, T.3
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly, P., Anctil, F., Aravena, R & Bobée, B. 2001 Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37(4), 885-896.
    • (2001) Water Resour. Res. , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 8
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Dabuechies, I. 1990 The wavelet transform, time-frequency localization and signal analysis. IEEE. Trans. Inf. Theory. 36, 6-7.
    • (1990) IEEE. Trans. Inf. Theory. , vol.36 , pp. 6-7
    • Dabuechies, I.1
  • 10
    • 84928136722 scopus 로고    scopus 로고
    • Application of the Artificial Neural Network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia
    • Deo, R. C. & Sahin, M. 2015 Application of the Artificial Neural Network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 161-162, 65-81.
    • (2015) Atmos. Res. , vol.161-162 , pp. 65-81
    • Deo, R.C.1    Sahin, M.2
  • 11
    • 0036435349 scopus 로고    scopus 로고
    • Use of the wavelet transform on hydro-meteorological data
    • Drago, A. F. & Boxall, S. R 2002 Use of the wavelet transform on hydro-meteorological data. Phys. Chem. Earth 27, 1387-1399.
    • (2002) Phys. Chem. Earth , vol.27 , pp. 1387-1399
    • Drago, A.F.1    Boxall, S.R.2
  • 12
    • 85016634184 scopus 로고    scopus 로고
    • Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: A case study of Azarshahr plain, East Azerbaijan, Iran
    • Gorgij, A. D., Kisi, O. & Moghaddam, A. A. 2016 Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr plain, East Azerbaijan, Iran. Hydrol. Res. DOI: 10.2166/nh.2016.202.
    • (2016) Hydrol. Res.
    • Gorgij, A.D.1    Kisi, O.2    Moghaddam, A.A.3
  • 14
    • 84924634673 scopus 로고    scopus 로고
    • Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater
    • Jha, M. K. & Sahoo, S. 2015 Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater. Hydrol. Process. 29(5), 671-691.
    • (2015) Hydrol. Process. , vol.29 , Issue.5 , pp. 671-691
    • Jha, M.K.1    Sahoo, S.2
  • 15
    • 84860608391 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations
    • Kisi, O. & Shiri, J. 2012 Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations. Hydrol. Res. 43(3), 286-300.
    • (2012) Hydrol. Res. , vol.43 , Issue.3 , pp. 286-300
    • Kisi, O.1    Shiri, J.2
  • 16
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression technique for streamflow prediction
    • Kucuk, M. & Agirali-super, N. 2006 Wavelet regression technique for streamflow prediction. J. Appl. Stat. 33, 943-960.
    • (2006) J. Appl. Stat. , vol.33 , pp. 943-960
    • Kucuk, M.1    Agirali-Super, N.2
  • 17
    • 84957009930 scopus 로고    scopus 로고
    • Water balance between surface water and groundwater in the withdrawal process: A case study of the Osceola watershed
    • Li, B. D., Zhang, X.-H., Xu, C.-Y., Zhang, H. & Song, J.-X. 2015 Water balance between surface water and groundwater in the withdrawal process: a case study of the Osceola watershed. Hydrol. Res. 46(6), 943-953.
    • (2015) Hydrol. Res. , vol.46 , Issue.6 , pp. 943-953
    • Li, B.D.1    Zhang, X.-H.2    Xu, C.-Y.3    Zhang, H.4    Song, J.-X.5
  • 18
    • 85016609977 scopus 로고    scopus 로고
    • A distributed hydrological model in the Heihe River basin and its potential for estimating the required irrigation water
    • Li, L., Xu, Z., Zhao, J. & Su, L. 2016 A distributed hydrological model in the Heihe River basin and its potential for estimating the required irrigation water. Hydrol. Res. DOI: 10.2166/nh.2016.024.
    • (2016) Hydrol. Res.
    • Li, L.1    Xu, Z.2    Zhao, J.3    Su, L.4
  • 20
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran, R & Khosa, R 2012 Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 46, 284-295.
    • (2012) Comput. Geosci. , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 21
    • 84871523656 scopus 로고    scopus 로고
    • Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics
    • Maheswaran, R & Khosa, R 2013 Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics. Comput. Geosci. 52, 422-436.
    • (2013) Comput. Geosci. , vol.52 , pp. 422-436
    • Maheswaran, R.1    Khosa, R.2
  • 24
    • 84944683850 scopus 로고    scopus 로고
    • Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites
    • Mohanty, S., Jha, M. K., Raul, S. K., Panda, R. K & Sudheer, K P. 2015 Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resour. Manage. 29(15), 5521-5532.
    • (2015) Water Resour. Manage , vol.29 , Issue.15 , pp. 5521-5532
    • Mohanty, S.1    Jha, M.K.2    Raul, S.K.3    Panda, R.K.4    Sudheer, K.P.5
  • 25
    • 84906905840 scopus 로고    scopus 로고
    • Groundwater recharge and discharge analysis for land use conditions suitable for the hydrology and ecology of semiarid regions
    • Moiwo, J. P. & Tao, F. 2014 Groundwater recharge and discharge analysis for land use conditions suitable for the hydrology and ecology of semiarid regions. Hydrol. Res. 45(4-5), 563-574.
    • (2014) Hydrol. Res. , vol.45 , Issue.4-5 , pp. 563-574
    • Moiwo, J.P.1    Tao, F.2
  • 26
    • 84874285796 scopus 로고    scopus 로고
    • A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods
    • Moosavi, V., Vafakhah, M., Shirmohammadi, B. & Behnia, N. 2013 A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour. Manage. 27(5), 1301-1321.
    • (2013) Water Resour. Manage , vol.27 , Issue.5 , pp. 1301-1321
    • Moosavi, V.1    Vafakhah, M.2    Shirmohammadi, B.3    Behnia, N.4
  • 27
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R D. & Veith, T. L. 2007 Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T ASABE. 50, 885-900.
    • (2007) T ASABE , vol.50 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Van Liew, M.W.3    Bingner, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 28
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak, P. C., Rao, Y S. & Sudheer, K 2006 Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour. Manage. 20, 77-90.
    • (2006) Water Resour. Manage , vol.20 , pp. 77-90
    • Nayak, P.C.1    Rao, Y.S.2    Sudheer, K.3
  • 29
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial intelligence models in hydrology: A review
    • Nourani, V., Hosseini Baghanam, A., Adamowski, J. & Kisi, O 2014 Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J. Hydrol. 514, 358-377.
    • (2014) J. Hydrol. , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 30
    • 84916205087 scopus 로고    scopus 로고
    • Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
    • Seo, Y., Kim, S., Kisi, O. & Singh, V. P. 2015 Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 520, 224-243.
    • (2015) J. Hydrol. , vol.520 , pp. 224-243
    • Seo, Y.1    Kim, S.2    Kisi, O.3    Singh, V.P.4
  • 31
    • 84555196629 scopus 로고    scopus 로고
    • Groundwater level forecasting using SVM-QPSO
    • B. K. Panigrahi, P. N. Suganthan, S. Das & S. C. Satapathy, eds. Springer, Heidelberg, Germany
    • Sudheer, C., Shrivastava, N. A., Panigrahi, B. K. & Mathur, S. 2011 Groundwater level forecasting using SVM-QPSO. In: SEMCCO (2011). Part I. LNCS, Vol. 7076 (B. K. Panigrahi, P. N. Suganthan, S. Das & S. C. Satapathy, eds). Springer, Heidelberg, Germany, pp. 731-741.
    • (2011) SEMCCO (2011). Part I. LNCS , vol.7076 , pp. 731-741
    • Sudheer, C.1    Shrivastava, N.A.2    Panigrahi, B.K.3    Mathur, S.4
  • 32
    • 84906935363 scopus 로고    scopus 로고
    • An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India
    • Suryanarayana, C., Sudheer, C., Mahammood, V. & Panigrahi, B. K. 2014 An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 145, 324-335.
    • (2014) Neurocomputing , vol.145 , pp. 324-335
    • Suryanarayana, C.1    Sudheer, C.2    Mahammood, V.3    Panigrahi, B.K.4
  • 33
    • 84885070735 scopus 로고    scopus 로고
    • Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
    • Tiwari, M. K. & Adamowski, J. 2013 Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour. Res. 49(10), 6486-6507.
    • (2013) Water Resour. Res. , vol.49 , Issue.10 , pp. 6486-6507
    • Tiwari, M.K.1    Adamowski, J.2
  • 34
    • 84930515238 scopus 로고    scopus 로고
    • Relations between groundwater flow in an unconfined aquifer and seepage patterns in a closed-basin lake in glacial terrain
    • Vainu, M., Terasmaa, J. & Häelm, M. 2015 Relations between groundwater flow in an unconfined aquifer and seepage patterns in a closed-basin lake in glacial terrain. Hydrol. Res. 46(3), 325-342.
    • (2015) Hydrol. Res. , vol.46 , Issue.3 , pp. 325-342
    • Vainu, M.1    Terasmaa, J.2    Häelm, M.3
  • 35
    • 84893212610 scopus 로고    scopus 로고
    • Evaluation of groundwater sustainability based on groundwater age simulation in the Zhangye Basin of Heihe river watershed, northwestern China
    • Wei, H., Xiao, H., Yin, Z. & Lu, Z. 2014 Evaluation of groundwater sustainability based on groundwater age simulation in the Zhangye Basin of Heihe river watershed, northwestern China. J. Arid. Land 6, 264-272.
    • (2014) J. Arid. Land , vol.6 , pp. 264-272
    • Wei, H.1    Xiao, H.2    Yin, Z.3    Lu, Z.4
  • 36
    • 34547744950 scopus 로고    scopus 로고
    • Groundwater flow modeling in the Zhangye Basin, Northwestern China
    • Wen, X. H., Wu, Y Q., Lee, L. J. E., Su, J. P. & Wu, J. 2007 Groundwater flow modeling in the Zhangye Basin, Northwestern China. Environ. Geol. 53(1), 77-84.
    • (2007) Environ. Geol. , vol.53 , Issue.1 , pp. 77-84
    • Wen, X.H.1    Wu, Y.Q.2    Lee, L.J.E.3    Su, J.P.4    Wu, J.5
  • 38
    • 84905969724 scopus 로고    scopus 로고
    • Systematic assessment of the uncertainty in integrated surface water-groundwater modeling based on the probabilistic collocation method
    • Wu, B., Zheng, Y., Tian, Y., Wu, X., Yao, Y., Han, F., Liu, J. & Zheng, C 2014 Systematic assessment of the uncertainty in integrated surface water-groundwater modeling based on the probabilistic collocation method. Water Resour. Res. 50(7), 5848-5865.
    • (2014) Water Resour. Res. , vol.50 , Issue.7 , pp. 5848-5865
    • Wu, B.1    Zheng, Y.2    Tian, Y.3    Wu, X.4    Yao, Y.5    Han, F.6    Liu, J.7    Zheng, C.8
  • 39
    • 78649784789 scopus 로고    scopus 로고
    • Surface water and groundwater transformation research in Heihe River Basin
    • in Chinese
    • Zhao, J. H., Wei, L. L., Zhao, Y P. & Ding, H. W. 2011 Surface water and groundwater transformation research in Heihe River Basin. Northwestern Geology 43, 120-126 (in Chinese).
    • (2011) Northwestern Geology , vol.43 , pp. 120-126
    • Zhao, J.H.1    Wei, L.L.2    Zhao, Y.P.3    Ding, H.W.4
  • 40
    • 84896816507 scopus 로고    scopus 로고
    • Estimating the contribution of groundwater to rootzone soil moisture
    • Zhu, Y., Ren, L., Horton, R., Lü, H., Chen, X., Jia, Y., Wang, Z. & Sudicky, E. A. 2013 Estimating the contribution of groundwater to rootzone soil moisture. Hydrol. Res. 44(6), 1102-1113.
    • (2013) Hydrol. Res. , vol.44 , Issue.6 , pp. 1102-1113
    • Zhu, Y.1    Ren, L.2    Horton, R.3    Lü, H.4    Chen, X.5    Jia, Y.6    Wang, Z.7    Sudicky, E.A.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.