메뉴 건너뛰기




Volumn 48, Issue 2, 2017, Pages 455-467

Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: A case study of Azarshahr Plain, East Azerbaijan, Iran

Author keywords

Artificial intelligence; Azarshahr; Genetic programming; Groundwater budget; Performance evaluation; Wavelet artificial neural network

Indexed keywords

AQUIFERS; ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; DEEP NEURAL NETWORKS; ENVIRONMENTAL MANAGEMENT; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; GROUNDWATER; MEAN SQUARE ERROR; NEURAL NETWORKS; WAVELET ANALYSIS;

EID: 85016634184     PISSN: 19989563     EISSN: 22247955     Source Type: Journal    
DOI: 10.2166/nh.2016.202     Document Type: Article
Times cited : (38)

References (30)
  • 2
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski, J. 2008 River flow forecasting using wavelet and cross-wavelet transform models. Hydrol. Process. 22, 4877-4891.
    • (2008) Hydrol. Process. , vol.22 , pp. 4877-4891
    • Adamowski, J.1
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407 (1-4), 28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 69249101676 scopus 로고    scopus 로고
    • Development of a new method of wavelet aided trend detection and estimation
    • Adamowski, K., Prokoph, A. & Adamowski, J. 2009 Development of a new method of wavelet aided trend detection and estimation. Hydrol. Process. 23, 2686-2696.
    • (2009) Hydrol. Process. , vol.23 , pp. 2686-2696
    • Adamowski, K.1    Prokoph, A.2    Adamowski, J.3
  • 6
    • 84888128953 scopus 로고    scopus 로고
    • Prediction and simulation of monthly groundwater levels by genetic programming
    • Fallah-Mehdipour, E., Bozorg Haddad, O. & Mariño, M. A. 2013 Prediction and simulation of monthly groundwater levels by genetic programming. J. Hydro-Environ. Res. 7, 253-260.
    • (2013) J. Hydro-Environ. Res. , vol.7 , pp. 253-260
    • Fallah-Mehdipour, E.1    Bozorg Haddad, O.2    Mariño, M.A.3
  • 7
    • 0000562670 scopus 로고
    • Decompositions of hardy functions into square integrable wavelets of constant shape
    • Grossman, A. & Morlet, J. 1984 Decompositions of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723-736.
    • (1984) SIAM J. Math. Anal. , vol.15 , pp. 723-736
    • Grossman, A.1    Morlet, J.2
  • 9
    • 77955768471 scopus 로고    scopus 로고
    • Daily suspended sediment estimation using neuro-wavelet models
    • Kisi, O. 2010 Daily suspended sediment estimation using neuro-wavelet models. Int. J. Earth Sci. 99, 1471-1482.
    • (2010) Int. J. Earth Sci. , vol.99 , pp. 1471-1482
    • Kisi, O.1
  • 10
    • 84860608391 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations
    • Kisi, O. & Shiri, J. 2012 Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations. Hydrol. Res. 43 (3), 286-300.
    • (2012) Hydrol. Res. , vol.43 , Issue.3 , pp. 286-300
    • Kisi, O.1    Shiri, J.2
  • 11
    • 84883577990 scopus 로고    scopus 로고
    • Wavelets-based non-linear model for real-time daily flow forecasting in Krishna River
    • Maheswaran, R. & Khosa, R. 2013 Wavelets-based non-linear model for real-time daily flow forecasting in Krishna River. J. Hydroinform. 15 (3), 1022-1041.
    • (2013) J. Hydroinform. , vol.15 , Issue.3 , pp. 1022-1041
    • Maheswaran, R.1    Khosa, R.2
  • 13
    • 78650507206 scopus 로고    scopus 로고
    • Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
    • Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. 2010 Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55 (7), 1175-1189.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.7 , pp. 1175-1189
    • Mirbagheri, S.A.1    Nourani, V.2    Rajaee, T.3    Alikhani, A.4
  • 14
    • 84938517056 scopus 로고    scopus 로고
    • Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting
    • Moosavi, V., Vafakhah, M., Shirmohammadi, B. & Ranjbar, M. 2013 Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting. Arab. J. Sci. Eng. 39 (3), 1785-1796.
    • (2013) Arab. J. Sci. Eng. , vol.39 , Issue.3 , pp. 1785-1796
    • Moosavi, V.1    Vafakhah, M.2    Shirmohammadi, B.3    Ranjbar, M.4
  • 15
    • 0346246585 scopus 로고    scopus 로고
    • Wavelets in time series analysis
    • Nason, G. P. & Sachs, R. 1999 Wavelets in time series analysis. Philos. Trans. Roy. Soc. 357, 2511-2526.
    • (1999) Philos. Trans. Roy. Soc. , vol.357 , pp. 2511-2526
    • Nason, G.P.1    Sachs, R.2
  • 16
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani, V., Alami, M. & Aminfar, M. 2009 A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 22, 466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.2    Aminfar, M.3
  • 17
    • 84862139051 scopus 로고    scopus 로고
    • Hybrid wavelet-genetic programming approach to optimize ANN modeling of rainfall-runoff process
    • Nourani, V., Komasi, M. & Alami, M. 2012 Hybrid wavelet-genetic programming approach to optimize ANN modeling of rainfall-runoff process. J. Hydrol. Eng. 16 (6), 724-741.
    • (2012) J. Hydrol. Eng. , vol.16 , Issue.6 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.3
  • 18
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-Artificial Intelligence models in hydrology: A review
    • Nourani, V., Hosseini Baghanam, A., Adamowski, J. & Kisi, O. 2014 Applications of hybrid wavelet-Artificial Intelligence models in hydrology: a review. J. Hydrol. 514, 358-377.
    • (2014) J. Hydrol. , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 19
    • 84924401963 scopus 로고    scopus 로고
    • Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling
    • Nourani, V., Alami, M. T. & Daneshvar Vousoughi, F. 2015 Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J. Hydrol. 524, 255-269.
    • (2015) J. Hydrol. , vol.524 , pp. 255-269
    • Nourani, V.1    Alami, M.T.2    Daneshvar Vousoughi, F.3
  • 20
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal, T. 2009 River flow forecasting using different artificial neural network algorithms and wavelet transform. Can J. Civil Eng. 36 (1), 26-38.
    • (2009) Can J. Civil Eng. , vol.36 , Issue.1 , pp. 26-38
    • Partal, T.1
  • 21
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal, T. & Kisi, O. 2007 Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 342 (1-2), 199-212.
    • (2007) J. Hydrol. , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 22
    • 84865525837 scopus 로고    scopus 로고
    • A practical guide to discrete wavelet decomposition of hydrologic time series
    • Sang, Y. F. 2012 A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resour. Manage. 26 (11), 3345-3365.
    • (2012) Water Resour. Manage. , vol.26 , Issue.11 , pp. 3345-3365
    • Sang, Y.F.1
  • 23
    • 84871115737 scopus 로고    scopus 로고
    • A review on the applications of wavelet transform in hydrology time series analysis
    • Sang, Y. F. 2013 A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 122,8-15.
    • (2013) Atmos. Res. , vol.122 , pp. 8-15
    • Sang, Y.F.1
  • 24
    • 84916205087 scopus 로고    scopus 로고
    • Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
    • Seo, Y., Kim, S., Kisi, O. & Singh, V. 2015 Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 520, 224-243.
    • (2015) J. Hydrol. , vol.520 , pp. 224-243
    • Seo, Y.1    Kim, S.2    Kisi, O.3    Singh, V.4
  • 25
    • 84855193767 scopus 로고    scopus 로고
    • Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
    • Shiri, J., Kisi, O., Landeras, G., Lopez, J., Nazemi, A. H. & Stuyt, L. 2012 Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J. Hydrol. 414-415, 302-316.
    • (2012) J. Hydrol. , vol.414-415 , pp. 302-316
    • Shiri, J.1    Kisi, O.2    Landeras, G.3    Lopez, J.4    Nazemi, A.H.5    Stuyt, L.6
  • 26
  • 27
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D. P. & Ostfeld, A. 2008 Data-driven modelling: some past experiences and new approaches. J. Hydroinform. 10 (1), 3-22.
    • (2008) J. Hydroinform. , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 29
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W. & Ding, J. 2003 Wavelet network model and its application to the prediction of hydrology. Nature Sci. 1 (1), 67-71.
    • (2003) Nature Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 30
    • 85016620552 scopus 로고    scopus 로고
    • A Trous decomposition applied to image edge detection
    • Zhang, X. & Li, D. 2001 A Trous decomposition applied to image edge detection. Geo. Info. Sci. 7 (2), 119-123.
    • (2001) Geo. Info. Sci. , vol.7 , Issue.2 , pp. 119-123
    • Zhang, X.1    Li, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.