메뉴 건너뛰기




Volumn 43, Issue 3, 2012, Pages 286-300

Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations

Author keywords

Forecasting; Groundwater depth; Neuro fuzzy; Wavelet neuro fuzzy

Indexed keywords

DISCRETE WAVELET TRANSFORMS; ERROR STATISTICS; FORECASTING; GROUNDWATER; GROUNDWATER RESOURCES; MEAN SQUARE ERROR;

EID: 84860608391     PISSN: 00291277     EISSN: None     Source Type: Journal    
DOI: 10.2166/nh.2012.104b     Document Type: Article
Times cited : (62)

References (61)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000a Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Engng ASCE 5 (2), 115-123.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000b Artificial neural networks in hydrology. I: Hydrologic applications. J. Hydrol. Engng. ASCE 5 (2), 124-137.
    • (2000) J. Hydrol. Engng. ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 60949107676 scopus 로고    scopus 로고
    • Co-active neurofuzzy inference system for evapotranspiration modeling
    • Aytek, A. 2009 Co-active neurofuzzy inference system for evapotranspiration modeling. Soft Comput. 13, 691-700
    • (2009) Soft Comput. , vol.13 , pp. 691-700
    • Aytek, A.1
  • 4
    • 0035116960 scopus 로고    scopus 로고
    • Forecasting of turbid floods in a coastal, chalk karstic drain using an artificial neural network
    • Beaudeau, P., Leboulanger, T., Lacroix, M., Hanneton, S. & Wang, H. Q. 2001 Forecasting of turbid floods in a coastal, chalk karstic drain using an artificial neural network. Ground Water39 (1), 109-118. (Pubitemid 32176951)
    • (2001) Ground Water , vol.39 , Issue.1 , pp. 109-118
    • Beaudeau, P.1    Leboulanger, T.2    Lacroix, M.3    Hanneton, S.4    Wang, H.Q.5
  • 5
    • 0031715454 scopus 로고    scopus 로고
    • Modeling water table fluctuations by means of a stochastic differential equation
    • Bierkens, M. F. P. 1998 Modeling water table fluctuations by means of a stochastic differential equation. Water Resour. Res. 34 (10), 2485-24499.
    • (1998) Water Resour. Res. , vol.34 , Issue.10 , pp. 2485-24499
    • Bierkens, M.F.P.1
  • 6
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • DOI 10.1016/j.jhydrol.2004.06.021, PII S0022169404002987
    • Bowden, G. J., Maier, H. R. & Dandy, G. C. 2005 Input determination for neural network models in water resourc es applications. Part1-Background and methodologies. J. Hydrol. 301, 75-92. (Pubitemid 39645410)
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 8
    • 0036478261 scopus 로고    scopus 로고
    • A neural networks approach for deriving irrigation reservoir operating rules
    • DOI 10.1023/A:1015563820136
    • Cancelliere, A., Giusiano, G., Ancarani, A. & Rossi, G 2002 A neural networks for deriving irrigation reservoir operating rules. Water Resour. Manage. 16, 71-88. (Pubitemid 34689995)
    • (2002) Water Resources Management , vol.16 , Issue.1 , pp. 71-88
    • Cancelliere, A.1    Giuliano, G.2    Ancarani, A.3    Rossi, G.4
  • 9
    • 27944494705 scopus 로고    scopus 로고
    • Predicting conductance due to upconing using neural networks
    • DOI 10.1111/j.1745-6584.2005.00092.x
    • Coppola, E., Mc Lane, C., Poulton, M., Szidarovszky, F. & Magelky, R. 2005a Predicting conductance due to upconing using neural networks. Ground Water 43 (6), 827-836. (Pubitemid 41681837)
    • (2005) Ground Water , vol.43 , Issue.6 , pp. 827-836
    • Coppola Jr., E.A.1    McLane, C.F.2    Poulton, M.M.3    Szidarovszky, F.4    Magelky, R.D.5
  • 10
    • 15944365544 scopus 로고    scopus 로고
    • A neural network model for predicting aquifer water level elevations
    • Coppola, E., Rana, A., Poulton, M., Szidarovszky, F. & Uhl, V. 2005b A neural network model for predicting aquifer water level elevations. Ground Water 43 (2), 231-241. (Pubitemid 40441348)
    • (2005) Ground Water , vol.43 , Issue.2 , pp. 231-241
    • Coppola Jr., E.A.1    Rana, A.J.2    Poulton, M.M.3    Szidarovszky, F.4    Uhl, V.W.5
  • 11
    • 33846235962 scopus 로고    scopus 로고
    • Multiobjective analysis of a public wellfield using artificial neural networks
    • DOI 10.1111/j.1745-6584.2006.00248.x
    • Coppola, E., Szidarovszky, F., Davis, D., Spayad, S., Poulton, M. & Roman, E. 2007 Multi objective analysis of a public wellfield using artificial neural networks. Ground Water 45 (1), 53-61. (Pubitemid 46103470)
    • (2007) Ground Water , vol.45 , Issue.1 , pp. 53-61
    • Coppola Jr., E.A.1    Szidarovszky, F.2    Davis, D.3    Spayd, S.4    Poulton, M.M.5    Roman, E.6
  • 12
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • DOI 10.1029/2000WR900368
    • Coulibaly, P., Anctil, F., Aravena, R & Bobee, B. 2001 Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37 (4), 885-896. (Pubitemid 32516044)
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 13
    • 2042453329 scopus 로고    scopus 로고
    • Wavelet analysis ofvariability in annual Canadian streamflows
    • Coulibaly, P. & Burn, H. D. 2004 Wavelet analysis ofvariability in annual Canadian streamflows. Water Resour. Res. 40, W03105.
    • (2004) Water Resour. Res. , vol.40
    • Coulibaly, P.1    Burn, H.D.2
  • 14
    • 0037388488 scopus 로고    scopus 로고
    • A fuzzy neural network model for deriving the river stage-discharge relationship
    • DOI 10.1623/hysj.48.2.197.44697
    • Deka, P. & Chandramouli, V. 2003 A fuzzy neural network model for deriving the river stage-discharge relationship. Hydrol. Sci. J. 48 (2), 197-209. (Pubitemid 36429886)
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.2 , pp. 197-209
    • Deka, P.1    Chandramouli, V.2
  • 15
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional groundwater levels affected by human activities
    • Feng, S., Kang, S., Huo, Z., Chen, S. & Mao, X. 2008 Neural networks to simulate regional groundwater levels affected by human activities. Ground Water 46 (1), 80-90.
    • (2008) Ground Water , vol.46 , Issue.1 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 16
    • 0001283907 scopus 로고
    • Time series modeling of water resources and environmental systems
    • Elsevier, New York
    • Hipel, K. W. & Mc Leod, A. I.1994 Time Series Modeling of Water Resources and Environmental Systems. Developments in Water Science, Vol. 45, Elsevier, New York.
    • (1994) Developments in Water Science , vol.45
    • Hipel, K.W.1    Mc Leod, A.I.2
  • 17
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J. S. R 1993 ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Manage. Cybernet. 23 (3), 665-685.
    • (1993) IEEE Trans. Syst. Manage. Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 18
    • 0029273384 scopus 로고
    • Neuro fuzzy modeling and control
    • Jang, J. S. R & Sun, C. T. 1995 Neuro fuzzy modeling and control. Proc. IEEE 83, 378-405.
    • (1995) Proc. IEEE , vol.83 , pp. 378-405
    • Jang, J.S.R.1    Sun, C.T.2
  • 20
    • 0029326262 scopus 로고
    • Neural network based fuzzy identification and its applications to modeling and control of complex systems
    • Jin, Y., Jiang, J. & Zhu, J. 1995 Neural network based fuzzy identification and its applications to modeling and control of complex systems. IEEE Trans. Syst. Manage. Cybernet. 25 (6), 990-997.
    • (1995) IEEE Trans. Syst. Manage. Cybernet. , vol.25 , Issue.6 , pp. 990-997
    • Jin, Y.1    Jiang, J.2    Zhu, J.3
  • 21
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • DOI 10.1623/hysj.2005.50.4.683
    • Kisi, O. 2005 Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J. 50 (4), 683-696. (Pubitemid 41057429)
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 22
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modelling
    • DOI 10.1623/hysj.51.6.1092
    • Kisi, O. 2006a Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci. J. 51 (6), 1092-1105. (Pubitemid 44873466)
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.6 , pp. 1092-1105
    • Kisi, O.1
  • 23
    • 33746879196 scopus 로고    scopus 로고
    • Evapotranspiration estimation using feed-forward neural networks
    • DOI 10.2166/nh.2006.010
    • Kisi, O. 2006b Evapotranspiration estimation using feed forward neural networks. Nordic Hydrol. 37 (3), 247-260. (Pubitemid 44184163)
    • (2006) Nordic Hydrology , vol.37 , Issue.3 , pp. 247-260
    • Kisi, O.1
  • 24
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • DOI 10.1016/j.jhydrol.2006.03.015, PII S0022169406001545
    • Kisi, O. 2006c Daily pan evaporation modeling using a neuro-fuzzy computing technique. J. Hydrol. 329, 636-646. (Pubitemid 44436243)
    • (2006) Journal of Hydrology , vol.329 , Issue.3-4 , pp. 636-646
    • Kisi, O.1
  • 25
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modelling from climatic data using a neural computing technique
    • DOI 10.1002/hyp.6403
    • Kisi, O.2007 Evapotranspiration modeling from climate data using a neural computing technique. Hydrol. Process. 21 (6), 1925-1934. (Pubitemid 47050336)
    • (2007) Hydrological Processes , vol.21 , Issue.14 , pp. 1925-1934
    • Kisi, O.1
  • 26
    • 71649094330 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
    • Kisi, O. 2009 Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrol. Process. 23 (25), 3583-3597.
    • (2009) Hydrol. Process. , vol.23 , Issue.25 , pp. 3583-3597
    • Kisi, O.1
  • 27
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neurofuzzy computing technique for evapotranspiration estimation
    • DOI 10.1061/(ASCE)0733-9437(2007)133:4(368)
    • Kisi, O. & Ozturk, O. 2007 Adaptive neurofuzzy computing technique for evapotranspiration estimation. J. Irrig. Drain. Engng ASCE 133 (4), 368-379. (Pubitemid 47098099)
    • (2007) Journal of Irrigation and Drainage Engineering , vol.133 , Issue.4 , pp. 368-379
    • Kisi, O.1    Ozturk, O.2
  • 28
    • 0033104702 scopus 로고    scopus 로고
    • TARSO modeling of water table depths
    • DOI 10.1029/1998WR900049
    • Knotters, M. & De Gooijer, J. G. 1999 TARSO modeling of water table depths. Water Resour. Res. 35 (3), 695-705. (Pubitemid 29111800)
    • (1999) Water Resources Research , vol.35 , Issue.3 , pp. 695-705
    • Knotters, M.1    De Gooijer, J.G.2
  • 29
    • 0031260124 scopus 로고    scopus 로고
    • Estimating fluctuation quantities from time series of water-table depths using models with a stochastic component
    • DOI 10.1016/S0022-1694(96)03278-7, PII S0022169496032787
    • Knotters, M. & Van Walsum, P. E. V. 1997 Estimating fluctuation quantities from time series of water table depths using models with a stochastic component J. Hydrol. 197, 25-46. (Pubitemid 27335602)
    • (1997) Journal of Hydrology , vol.197 , Issue.1-4 , pp. 25-46
    • Knotters, M.1    Van Walsum, P.E.V.2
  • 31
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1. A review of concepts
    • DOI 10.1016/j.jhydrol.2005.04.003, PII S0022169405001769
    • Labat, D. 2005 Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 314 (1-4), 275-288. (Pubitemid 41727787)
    • (2005) Journal of Hydrology , vol.314 , Issue.1-4 , pp. 275-288
    • Labat, D.1
  • 32
    • 28444486059 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 2 - Amazon, Parana, Orinoco and Congo discharges time scale variability
    • DOI 10.1016/j.jhydrol.2005.04.004, PII S0022169405001770
    • Labat, D., Ronchail, J. & Guyot, J. L. 2005 Recent advances in wavelet analyses: Part 2\Amazon, Parana, Orinoco and Congo discharges time scale variability. J. Hydrol. 314 (1-4), 289-311. (Pubitemid 41727788)
    • (2005) Journal of Hydrology , vol.314 , Issue.1-4 , pp. 289-311
    • Labat, D.1    Ronchail, J.2    Guyot, J.L.3
  • 33
    • 24144451684 scopus 로고    scopus 로고
    • Decomposition of interdecadal and interannual components for North China rainfall in rainy season
    • in Chinese
    • Lu, R Y. 2002 Decomposition of interdecadal and interannual components for North China rainfall in rainy season. Chin. J. Atmos. 26, 611-624 (in Chinese).
    • (2002) Chin. J. Atmos. , vol.26 , pp. 611-624
    • Lu, R.Y.1
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R & Dany, G C. 2000 Neural networks for the prediction and forecasting ofwater resources variables: A review of modeling issues and applications. Env. Model. Softw. 15, 101-124. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: The wavelet representation
    • Mallat, S. G. 1989 A theory for multi resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11 (7), 674-693.
    • (1989) IEEE Trans. Pattern Anal. Machine Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 36
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani, E. H. & Assilian, S. 1975 An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7 (1), 1-13.
    • (1975) Int. J. Man Mach. Stud. , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 37
    • 70350596529 scopus 로고    scopus 로고
    • The wavelet packet transform: A technique for investigating temporal variation of river water solutes
    • Milne, A. E., Macleod, C. J. A., Haygarth, P. M., Hawkins, J. M. B. & Lark, R. M. 2009 The wavelet packet transform: A technique for investigating temporal variation of river water solutes. J. Hydrol. 379 (1-2), 1-19.
    • (2009) J. Hydrol. , vol.379 , Issue.1-2 , pp. 1-19
    • Milne, A.E.1    MacLeod, C.J.A.2    Haygarth, P.M.3    Hawkins, J.M.B.4    Lark, R.M.5
  • 38
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. 1996 Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41 (3), 399-418.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-418
    • Minns, A.W.1    Hall, M.J.2
  • 39
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neurofuzzy inference system techniques
    • Moghaddamnia, A., Ghafari Gousheh, M., Piri, J., Amin, S. & Han, D. 2009 Evaporation estimation using artificial neural networks and adaptive neurofuzzy inference system techniques. Adv. Water Resour. 32, 88-97.
    • (2009) Adv. Water Resour. , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    Ghafari Gousheh, M.2    Piri, J.3    Amin, S.4    Han, D.5
  • 40
    • 0032899424 scopus 로고    scopus 로고
    • Spatial estimation of transmissivity using artificial neural network
    • Mukhopadhyay, A. 1999 Spatial estimation of transmissivity using artificial neural network. Ground Water 37 (3), 458-464. (Pubitemid 29212035)
    • (1999) Ground Water , vol.37 , Issue.3 , pp. 458-464
    • Mukhopadhyay, A.1
  • 41
    • 13844307562 scopus 로고    scopus 로고
    • An ANN and wavelet transformation based method for short term load forecast Energy management and power delivery
    • Ning, M. & Yunping, C. 1998 An ANN and wavelet transformation based method for short term load forecast Energy management and power delivery. In Proceedings of Energy Management and Power Delivery, Vol. 2, pp. 405-410.
    • (1998) Proceedings of Energy Management and Power Delivery , vol.2 , pp. 405-410
    • Ning, M.1    Yunping, C.2
  • 43
    • 0033707169 scopus 로고    scopus 로고
    • Intelligent processing of time series using neuro fuzzy genetic approach
    • Goa, India
    • Palit, A. K. & Popovic, D. 2000 Intelligent processing of time series using neuro fuzzy genetic approach. In Proc. IEEE-ICIT Conference, Goa, India, Vol. 1, pp. 141-146.
    • (2000) Proc. IEEE-ICIT Conference , vol.1 , pp. 141-146
    • Palit, A.K.1    Popovic, D.2
  • 45
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • DOI 10.1016/j.jhydrol.2007.05.026, PII S0022169407003216
    • Partal, T. & Kisi, O. 2007 Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 342, 199-212. (Pubitemid 47069364)
    • (2007) Journal of Hydrology , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 46
    • 33751399443 scopus 로고    scopus 로고
    • Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)
    • DOI 10.1016/j.pce.2006.04.043, PII S1474706506002981
    • Partal, T. & Küçük, M. 2006 Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys. Chem. Earth31, 1189-1200. (Pubitemid 44817637)
    • (2006) Physics and Chemistry of the Earth , vol.31 , Issue.18 , pp. 1189-1200
    • Partal, T.1    Kucuk, M.2
  • 47
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri, J. & Kisi, O. 2010 Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol. 394 (3-4), 486-493.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 486-493
    • Shiri, J.1    Kisi, O.2
  • 48
    • 80052542665 scopus 로고    scopus 로고
    • Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
    • Shiri, J. & Kisi, O. 2011 Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Comput. Geosci.
    • (2011) Comput. Geosci
    • Shiri, J.1    Kisi, O.2
  • 49
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith, L. C., Turcotte, D. L. & Isacks, B. 1998 Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Process. 12, 233-249. (Pubitemid 128555374)
    • (1998) Hydrological Processes , vol.12 , Issue.2 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.L.3
  • 50
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage-discharge relationship for a tidal river
    • DOI 10.1002/hyp.1278
    • Supharatid, S. 2003 Application of a neural network model in establishing a stage-discharge relationship for a tidal river. Hydrol. Process. 17, 3085-3099. (Pubitemid 37365743)
    • (2003) Hydrological Processes , vol.17 , Issue.15 , pp. 3085-3099
    • Supharatid, S.1
  • 51
    • 34548134022 scopus 로고    scopus 로고
    • A hybrid artificial neural network-numerical model for ground water problems
    • DOI 10.1111/j.1745-6584.2007.00330.x
    • Szidarovszky, F., Coppola, E., Long, J., Hall, A. & Poulton, M. 2007 A hybrid artificial neural network-numerical model for groundwater problems. Ground Water 45 (5), 590-600. (Pubitemid 47301552)
    • (2007) Ground Water , vol.45 , Issue.5 , pp. 590-600
    • Szidarovszky, F.1    Coppola Jr., E.A.2    Long, J.3    Hall, A.D.4    Poulton, M.M.5
  • 52
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi, T. & Sugeno, M. 1985 Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Manage. Cybernet. 15 (1), 116-132.
    • (1985) IEEE Trans. Syst. Manage. Cybernet. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 53
    • 0027836314 scopus 로고
    • Comparison of univariate and transfer function models of groundwater fluctuations
    • Tankersley, C. D., Graham, W. D. & Hatfield, K. 1993 Comparison of univariate and transfer function models of groundwater fluctuations. Water Resour. Res. 29 (10), 2517-3533.
    • (1993) Water Resour. Res. , vol.29 , Issue.10 , pp. 2517-3533
    • Tankersley, C.D.1    Graham, W.D.2    Hatfield, K.3
  • 54
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. 2002 Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 4 (6), 879-892. (Pubitemid 35442407)
    • (2002) Hydrological Sciences Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 55
    • 19544366488 scopus 로고    scopus 로고
    • Multiscale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China
    • Xingang, D., Ping, W. & Jifan, C. 2003 Multiscale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China. Chin. Sci. Bull. 48, 2730-2734.
    • (2003) Chin. Sci. Bull. , vol.48 , pp. 2730-2734
    • Xingang, D.1    Ping, W.2    Jifan, C.3
  • 56
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of the hydrology
    • Wang, W. & Ding, J.2003 Wavelet network model and its application to the prediction of the hydrology. Nat. Sci. 1 (1), 67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 57
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at three gorges dam in yangtze river with wavelet network model
    • Wang, W., Jin, J. & Li, Y. 2009 Prediction of inflow at three gorges dam in yangtze river with wavelet network model. Water Resour. Manage. 23, 2791-2803.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 58
    • 0030615817 scopus 로고    scopus 로고
    • An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series
    • Van Geer, F. C. & Zuur, A. F. 1997 An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series. J. Hydrol. 192, 65-80.
    • (1997) J. Hydrol. , vol.192 , pp. 65-80
    • Van Geer, F.C.1    Zuur, A.F.2
  • 59
    • 11144347859 scopus 로고    scopus 로고
    • Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics
    • DOI 10.1016/j.jhydrol.2004.07.001, PII S0022169404003774
    • Vernieuwe, H., Georgieva, O., De Baets, B., Pauwels, V. R. N., Verhoest, N. E. C. & De Troch, F. P. 2005 Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics. J. Hydrol. 302 (1-4), 173-186. (Pubitemid 40020304)
    • (2005) Journal of Hydrology , vol.302 , Issue.1-4 , pp. 173-186
    • Vernieuwe, H.1    Georgieva, O.2    De Baets, B.3    Pauwels, V.R.N.4    Verhoest, N.E.C.5    De Troch, F.P.6
  • 60
    • 60949086949 scopus 로고    scopus 로고
    • Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province, China
    • Yang, Z. P., Lub, W. X., Long, Y. Q. & Lib, P. 2005 Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province, China. J. Arid Env. 73 (4-5), 487-492.
    • (2005) J. Arid Env. , vol.73 , Issue.4-5 , pp. 487-492
    • Yang, Z.P.1    Lub, W.X.2    Long, Y.Q.3    Lib, P.4
  • 61
    • 38149027113 scopus 로고    scopus 로고
    • The research of monthly discharge predictor-corrector model based on wavelet decomposition
    • Zhou, H. C., Peng, Y & Liang, G-H. 2008 The research of monthly discharge predictor-corrector model based on wavelet decomposition. Water Resour. Manage. 22 (2), 217-227.
    • (2008) Water Resour. Manage. , vol.22 , Issue.2 , pp. 217-227
    • Zhou, H.C.1    Peng, Y.2    Liang, G.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.