메뉴 건너뛰기




Volumn 145, Issue , 2014, Pages 324-335

An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India

Author keywords

Groundwater level; Predicting; Support vector regression; Wavelet transform

Indexed keywords

DISCRETE WAVELET TRANSFORMS; FORECASTING; GROUNDWATER; NEURAL NETWORKS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES; WAVELET TRANSFORMS;

EID: 84906935363     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.026     Document Type: Article
Times cited : (141)

References (37)
  • 1
    • 0345103246 scopus 로고    scopus 로고
    • A decomposition method for solving coupled multi-species reactive transport problems
    • Sun Y., Clement T. A decomposition method for solving coupled multi-species reactive transport problems. Transp. Porous Media 1999, 37(3):327-346.
    • (1999) Transp. Porous Media , vol.37 , Issue.3 , pp. 327-346
    • Sun, Y.1    Clement, T.2
  • 2
    • 33644989492 scopus 로고    scopus 로고
    • A Bayesian network approach to traffic flow forecasting
    • Sun S., Zhang C., Yu G. A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7(1):124-132.
    • (2006) IEEE Trans. Intell. Transp. Syst. , vol.7 , Issue.1 , pp. 124-132
    • Sun, S.1    Zhang, C.2    Yu, G.3
  • 3
    • 34249888176 scopus 로고    scopus 로고
    • The selective random subspace predictor for traffic flow forecasting
    • Sun S., Zhang C. The selective random subspace predictor for traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 2007, 8(2):367-373.
    • (2007) IEEE Trans. Intell. Transp. Syst. , vol.8 , Issue.2 , pp. 367-373
    • Sun, S.1    Zhang, C.2
  • 4
    • 79958135902 scopus 로고    scopus 로고
    • Variational inference for infinite mixtures of gaussian processes with applications to traffic flow prediction
    • Sun S., Xu X. Variational inference for infinite mixtures of gaussian processes with applications to traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 2011, 12(2):466-475.
    • (2011) IEEE Trans. Intell. Transp. Syst. , vol.12 , Issue.2 , pp. 466-475
    • Sun, S.1    Xu, X.2
  • 6
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ann learning algorithms
    • Adamowski J., Karapataki C. Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ann learning algorithms. J. Hydrol. Eng. 2010, 15(10):729-743.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 7
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam C., Liong S. Flow categorization model for improving forecasting. Nordic Hydrol. 2005, 36(1):37-48.
    • (2005) Nordic Hydrol. , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.2
  • 8
    • 84863469677 scopus 로고    scopus 로고
    • Towards automatic lithological classification from remote sensing data using support vector machines
    • Yu L., Porwal A., Holden E.-J., Dentith M.C. Towards automatic lithological classification from remote sensing data using support vector machines. Comput. Geosci. 2012, 45:229-239.
    • (2012) Comput. Geosci. , vol.45 , pp. 229-239
    • Yu, L.1    Porwal, A.2    Holden, E.-J.3    Dentith, M.C.4
  • 9
    • 84857916067 scopus 로고    scopus 로고
    • Support vector machines and object-based classification for obtaining land-use/cover cartography from hyperion hyperspectral imagery
    • Petropoulos G.P., Kalaitzidis C., Prasad Vadrevu K. Support vector machines and object-based classification for obtaining land-use/cover cartography from hyperion hyperspectral imagery. Comput. Geosci. 2012, 41:99-107.
    • (2012) Comput. Geosci. , vol.41 , pp. 99-107
    • Petropoulos, G.P.1    Kalaitzidis, C.2    Prasad Vadrevu, K.3
  • 10
    • 27744586803 scopus 로고    scopus 로고
    • Genetic programming for analysis and real-time prediction of coastal algal blooms
    • Muttil N., Lee J. Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecol. Model. 2005, 189(3-4):363-376.
    • (2005) Ecol. Model. , vol.189 , Issue.3-4 , pp. 363-376
    • Muttil, N.1    Lee, J.2
  • 11
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407(1):28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines 1
    • Liong S., Sivapragasam C. Flood stage forecasting with support vector machines 1. J. Am. Water Resour. Assoc. 2002, 38(1):173-186.
    • (2002) J. Am. Water Resour. Assoc. , vol.38 , Issue.1 , pp. 173-186
    • Liong, S.1    Sivapragasam, C.2
  • 15
    • 27744590254 scopus 로고    scopus 로고
    • Discharge rating curve extension-a new approach
    • Sivapragasam C., Muttil N. Discharge rating curve extension-a new approach. Water Resour. Manag. 2005, 19(5):505-520.
    • (2005) Water Resour. Manag. , vol.19 , Issue.5 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 16
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan M.S., Coulibaly P. Application of support vector machine in lake water level prediction. J. Hydrol. Eng. 2006, 11(3):199-205.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 17
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.-Y., Cheng C.-T., Chau K.-W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51(4):599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 18
    • 39549084921 scopus 로고    scopus 로고
    • Estimation of removal efficiency for settling basins using neural networks and support vector machines
    • Singh K., Pal M., Ojha C., Singh V. Estimation of removal efficiency for settling basins using neural networks and support vector machines. J. Hydrol. Eng. 2008, 13(3):146-155.
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.3 , pp. 146-155
    • Singh, K.1    Pal, M.2    Ojha, C.3    Singh, V.4
  • 19
    • 51149118683 scopus 로고    scopus 로고
    • Using support vector machines to develop pedotransfer functions for water retention of soils in Poland
    • Lamorski K., Pachepsky Y., Sławiński C., Walczak R. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J. 2008, 72(5):1243-1247.
    • (2008) Soil Sci. Soc. Am. J. , vol.72 , Issue.5 , pp. 1243-1247
    • Lamorski, K.1    Pachepsky, Y.2    Sławiński, C.3    Walczak, R.4
  • 20
    • 70349878652 scopus 로고    scopus 로고
    • Probabilistic reservoir operation using Bayesian stochastic model and support vector machine
    • Karamouz M., Ahmadi A., Moridi A. Probabilistic reservoir operation using Bayesian stochastic model and support vector machine. Adv. Water Resour. 2009, 32(11):1588-1600.
    • (2009) Adv. Water Resour. , vol.32 , Issue.11 , pp. 1588-1600
    • Karamouz, M.1    Ahmadi, A.2    Moridi, A.3
  • 21
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.-C., Chau K.-W., Cheng C.-T., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374(3):294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3 , pp. 294-306
    • Wang, W.-C.1    Chau, K.-W.2    Cheng, C.-T.3    Qiu, L.4
  • 22
    • 77950866077 scopus 로고    scopus 로고
    • Statistical downscaling of daily precipitation using support vector machines and multivariate analysis
    • Chen S.-T., Yu P.-S., Tang Y.-H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385(1):13-22.
    • (2010) J. Hydrol. , vol.385 , Issue.1 , pp. 13-22
    • Chen, S.-T.1    Yu, P.-S.2    Tang, Y.-H.3
  • 23
    • 84879110170 scopus 로고    scopus 로고
    • Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization
    • Sudheer C., Kumar D., Prasad R.K., Mathur S. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization. J. Contam. Hydrol. 2013, 151:105-116.
    • (2013) J. Contam. Hydrol. , vol.151 , pp. 105-116
    • Sudheer, C.1    Kumar, D.2    Prasad, R.K.3    Mathur, S.4
  • 24
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O., Cimen M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011, 399(1):132-140.
    • (2011) J. Hydrol. , vol.399 , Issue.1 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 25
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • Shawe-Taylor J., Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011, 74(17):3609-3618.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 26
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C., Liong S., Pasha M. Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinf. 2001, 3(3):141-152.
    • (2001) J. Hydroinf. , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 27
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X., Liong S., Babovic V. EC-SVM approach for real-time hydrologic forecasting. J. Hydroinf. 2004, 6(3):209-223.
    • (2004) J. Hydroinf. , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.2    Babovic, V.3
  • 28
    • 84874509284 scopus 로고    scopus 로고
    • Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform
    • Kalteh A.M. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput. Geosci. 2012, 54:1-8.
    • (2012) Comput. Geosci. , vol.54 , pp. 1-8
    • Kalteh, A.M.1
  • 29
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 2008, 358(3):317-331.
    • (2008) J. Hydrol. , vol.358 , Issue.3 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 30
    • 34548855348 scopus 로고    scopus 로고
    • A wavelet-fuzzy combined approach for classification and location of transmission line faults
    • Jayabharata Reddy M., Mohanta D. A wavelet-fuzzy combined approach for classification and location of transmission line faults. Int. J. Electr. Power Energy Syst. 2007, 29(9):669-678.
    • (2007) Int. J. Electr. Power Energy Syst. , vol.29 , Issue.9 , pp. 669-678
    • Jayabharata Reddy, M.1    Mohanta, D.2
  • 31
    • 84862648048 scopus 로고    scopus 로고
    • Wavelet-volterra coupled model for monthly stream flow forecasting
    • Maheswaran R., Khosa R. Wavelet-volterra coupled model for monthly stream flow forecasting. J. Hydrol. 2012, 450:320-335.
    • (2012) J. Hydrol. , vol.450 , pp. 320-335
    • Maheswaran, R.1    Khosa, R.2
  • 32
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran R., Khosa R. Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 2012, 46:284-295.
    • (2012) Comput. Geosci. , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 35
    • 1642578192 scopus 로고    scopus 로고
    • Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
    • Choy K., Chan C. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. Int. J. Syst. Sci. 2003, 34(1):763-773.
    • (2003) Int. J. Syst. Sci. , vol.34 , Issue.1 , pp. 763-773
    • Choy, K.1    Chan, C.2
  • 36
    • 0038076657 scopus 로고    scopus 로고
    • Neural Network Toolbox for Use with MATLAB, Users Guide, Version 3.0., The Mathworks Inc., Natick., MA
    • H. Demuth, M. Beale, Neural Network Toolbox for Use with MATLAB, Users Guide, Version 3.0., The Mathworks Inc., Natick., MA, 1997.
    • (1997)
    • Demuth, H.1    Beale, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.